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Abstract. This study provides results for the optimization
strategy of highly parameterized models, especially with a
high number of unknown input parameters and joint prob-
lems in terms of sufficient parameter space. Consequently,
the uncertainty in model parameterization and measurements
must be considered when highly variable nitrogen losses,
e.g. N leaching, are to be predicted. The Bayesian calibra-
tion methodology was used to investigate the parameter un-
certainty of the process-based CoupModel. Bayesian meth-
ods link prior probability distributions of input parameters to
likelihood estimates of the simulation results by comparison
with measured values. The uncertainty in the updated poste-
rior parameters can be used to conduct an uncertainty anal-
ysis of the model output. A number of 24 model variables
were optimized during 20 000 simulations to find the “opti-
mum” value for each parameter. The likelihood was com-
puted by comparing simulation results with observed values
of 23 output variables including soil water contents, soil tem-
peratures, groundwater level, soil mineral nitrogen, nitrate
concentrations below the root zone, denitrification and har-
vested carbon from grassland plots in Northern Germany for
the period 1997–2002. The posterior parameter space was
sampled with the Markov Chain Monte Carlo approach to
obtain plot-specific posterior parameter distributions for each
system. Posterior distributions of the parameters narrowed
down in the accepted runs, thus uncertainty decreased. Re-
sults from the single-plot optimization showed a plausible re-
production of soil temperatures, soil water contents and wa-
ter tensions in different soil depths for both systems. The
model performed better for these abiotic system properties
compared to the results for harvested carbon and soil mineral
nitrogen dynamics. The high variability in modeled nitrogen
leaching showed that the soil nitrogen conditions are highly
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uncertain associated with low modeling efficiencies. Simu-
lated nitrate leaching was compared to more general, site-
specific estimations, indicating a higher leaching during the
seepage periods for both simulated grassland systems.

1 Introduction

The prediction of nutrient losses under agricultural land use
is an important factor for the economic and ecologic evalua-
tion of specific farming systems. The movement of nutrients
and pollutants, which can be identical, namely nitrogen (N),
but different in their load/concentration, has been concerned
with various environmental effects (Lewis et al., 2003). Es-
pecially for intensive grassland systems, nitrogen leaching
can produce unfavorable risks for surface water and near-
surface groundwater. Various methods to quantify the com-
plex interactions between components of the nitrogen bal-
ance have been developed, where extensive measurements
would be too expensive and difficult (Jovanovic et al., 2008).
General estimations of nitrogen losses are mostly based on
simple mass balances at field or farm-gate scale. These N
budgets measure or estimate the inputs and outputs of nutri-
ents without detailed measurements of losses such as leach-
ing, denitrification and volatilization (OECD, 2001). Such
pure behavior imitation of “black box” approaches is neces-
sary for the operational application of models at catchment
scale, even if extrapolation purposes in space and time are
limited (Casper, 2002).

Simulation models represent a modern alternative to ob-
servations. Greater understanding of nitrogen dynamics in
soils at field scale can potentially improve agricultural prac-
tices regarding N use efficiency and minimizing pollution.
Detailed process knowledge is necessary to evaluate model
results. But point measurements or process observations
are less useful for optimization and evaluation of models
with increasing degree of model abstraction or higher spatial
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scale (Casper, 2002). Only robust parameterization tech-
niques allow for plausible explanations of system behavior
in physically based models. Due to complex transforma-
tions of soil N and carbon, many models express this com-
plexity by a high number of input parameters, which im-
plicates the need for a careful model optimization (Pappen-
berger and Beven, 2006). Until recently, calibration of highly
parameterized models was performed by an intensive sensi-
tivity analysis and fitting modeling results to measurements
by “trial and error” procedure until observed values were
reproduced well. Several procedures such as single, multi-
ple or sequential parameter calibration procedures to opti-
mize process-based models were tested, but the uncertainty
in model input parameters and observations were not taken
into account (Reinds et al., 2008). Consequently, only that
parameter setting resulting in the best agreement between
model and observations was accepted. But several combi-
nations of input parameters may give the same model result,
which makes it difficult to define a unique set of input pa-
rameters. Optimization methods that include uncertainties in
model and measurements are thus to be preferred over “sin-
gle best fit” methods without uncertainty assessment.

The Bayesian calibration methods have been used for op-
timization of forest ecosystems (Van Oijen et al., 2005;
Klemedtsson et al., 2008) or watershed models (Vrugt et
al., 2006). Bayesian approaches include probability distri-
butions of model input parameters, based on prior assump-
tions about their magnitude and uncertainty, combined with
likelihood estimates of the model results by comparison with
observations for model output variables. Consequently, pa-
rameter uncertainty can be quantified by this combined in-
formation. The updated parameter uncertainty can be used
to analyze model output uncertainty. Reinds et al. (2008)
defined the Bayesian calibration as a twofold extension of
Maximum Likelihood estimation including prior information
about input parameters and indentifying a single parameter
vector with maximum probability and its uncertainty esti-
mate. The Bayesian calibration technique was applied in
this study to optimize the CoupModel (Jansson and Karl-
berg, 2004) on two different grassland systems in North-
ern Germany. Data on soil temperatures, soil water con-
tents, groundwater (= saturation) level, nitrate (NO3) nitro-
gen concentration, soil nitrogen contents, denitrification and
harvested carbon were available (Wachendorf et al., 2004;
Herrmann, 2005; Lampe, 2005). Single-plot optimizations
were carried out for 24 input parameters to investigate effect
of parameter space and start value for each grassland sys-
tem. The aim of this study was to test the applicability and
usefulness of the Bayesian optimization technique for the pa-
rameterization of grassland systems. Obtained results could
be helpful for parameterization of CoupModel in terms of the
complex and uncertain soil N fluxes.

2 Materials and methods

2.1 Site description and measurements

Measured data were provided by the integrated project “The
nitrogen project: A system approach to optimize nitrogen use
efficiency on the dairy farm” located at the experimental farm
“Karkendamm” in Northern Germany and carried out be-
tween 1997 and 2003 (Taube and Wachendorf, 2001). Multi-
factorial field experiments were conducted to investigate crop
quality, soil nitrogen balance and groundwater quality. The
climate at Karkendamm is maritime temperate with a mean
annual temperature of 8.6◦C and a mean precipitation of
865 mm year−1 (Herrmann et al., 2005). Investigated grass-
land plots were dominated by perennial ryegrass (Lolium
perenneL.) with up to four harvests per year. Two fertiliza-
tion levels were considered: non-fertilized (N0) and highly
fertilized (N300; 300 kg mineral N ha−1 year−1). Dominat-
ing soil types are Podzols (FAO, 2006) with low nutrient stor-
age capacity and high leaching potential. The original soil
profile was deep-ploughed in 1981 to improve the hydraulic
conductivity leading to slanted soil layers between 0.27 and
0.80 m (Scholz, 1999). Sand contents varied between 85.7%
and 93.0% up to a depth of one meter. Total organic carbon
was highest in the upper soil profile with 3.8–5.6%, just as
the total N with 0.21–0.27%. Available measurements are
listed in Table 1 and were used to assess the CoupModel per-
formance by comparing these observations with correspond-
ing model results. In addition to measured soil water con-
tents observed with TDR sensors and gravimetric technique,
averaged soil water tensions in 30, 50 and 70 cm depth of the
mown grassland were used to validate soil water conditions.
Measurements were taken with puncture tensiometers with a
rubber septum at the top during summer 1998 and 1999. Fur-
ther information about data acquisition can be derived from
Conrad and Fohrer (2009b). Observed soil solution concen-
trations can vary considerably, and measurement uncertainty
is affected most likely by the spatial variability within the
plot (Reinds et al., 2008). De Vries et al. (1999) reported
a spatial variability of measured soil solution concentrations
between 20–60% depending on depth and type of ion in for-
est soils from the Netherlands. In Reinds et al. (2008), an un-
certainty of 30% was used for major ions at 40–60 cm depth
for the Dutch forest plots. For low concentrations that are
often measured for NO3 or aluminium, the measurement un-
certainty is probably higher than 30%. Harmel et al. (2006)
presented literature data about the uncertainty in sampling,
preservation and analysis of solved nitrogen species in water
samples. The error of solved NO3 nitrogen varied between
−47% and−14%, when samples were refrigerated and ana-
lyzed within 54 h. The uncertainty in the laboratory analysis
can range from±75% to 400% for NO3, while the colori-
metric technique showed error ranges from−4% to 9%. In
this study, we assumed a relative error of±20% for the mea-
sured variables except for the NO3 nitrogen concentration in
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Table 1. Available measurements at the Karkendamm site (Wachendorf et al., 2004), used for stochastic optimization.

Variable Depth (m) Measuring period Numbers of samples

Soil temperature (◦C) 0.05, 0.10, 0.15 1997–2002 1648
Soil water content (Vol.%) 0.10, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80 1998–2002 20–198
Groundwater level (m) 1997–2002 146
NO3 N concentration (mg N l−1) 0.60 1997–2002 995 (N0), 952 (N300)
Harvested carbon (g C m−2) above ground 1997–1999 3 (N0), 0 (N300)a

Soil mineral N (Nmin) (g N m−2) 0–0.30, 0–0.60, 0–0.90 1999–2002 11–16
Soil NO3 N (g N m−2) 0–0.30, 0–0.60, 0–0.90 1999–2002 11–17
Soil NH4 N (g N m−2) 0–0.30, 0–0.60, 0–0.90 1997–2002 19–24
Denitrification (g N m−2) non-fertilized plot Apr–Jul 2001 32

a N0: additional estimates for 2000 and 2001; N300: estimated from harvested clover-grass (highly fertilized)

the non-fertilized grassland (relative error:±50%). An abso-
lute error was assumed for the soil temperatures with±1◦C
according to manufacturer’s information on the temperature
sensors and for the groundwater level with±0.05 m.

The NO3 nitrogen leaching below the rooting zone
(>60 cm) in the experimental data set from Karkendamm
was not measured directly but calculated as a product of
the averaged NO3 nitrogen concentration and an estimated
seepage water amount according to the climatic water bal-
ance equation (DVWK, 1996). This approach presented by
Büchter (2003) is simple but best practice when water bal-
ance conditions can only be estimated and was called further
model “Büchter”. In our study, results of CoupModel and
model “Büchter” were compared regarding the calculations
for seepage water amount and NO3 nitrogen leaching.

2.2 CoupModel setup

CoupModel (Jansson and Karlberg, 2004) is an ecosystem
process model used to calculate coupled heat, water, carbon
and nitrogen fluxes under one-dimensional, unsaturated soil
conditions. Several plant covers can be defined above the
horizontal layered soil profile, where the Richard’s equation
is solved for water flow, and the Fourier’s law of diffusion is
used for heat fluxes. Lower boundary condition can be de-
fined as free drainage or saturated. Potential transpiration is
calculated from Penman’s combination equation in the form
given by Monteith (1965). The surface and aerodynamic re-
sistance values are dependent on indices for the plant and leaf
area, where these vegetation properties are calculated from
the dynamic above ground biomass development. Compen-
satory water uptake by plant roots determines actual tran-
spiration, where effects of soil temperature and salt on wa-
ter uptake are ignored. Carbon and nitrogen dynamics are
regulated by several plant and soil compartments linked by
transfer and decay coefficients such as for biomass, litter or
soil organic pools. Further information on nitrogen dynam-
ics in soil and plant can be obtained in Jansson and Karlberg

(2004). The CoupModel has been applied since 2002 for
roadsides (Lundmark, 2008), forests (Norman et al., 2008)
and arable ecosystems (Karlberg et al., 2007; Zhang et al.,
2007; Conrad and Fohrer, 2009a,b) at the plot scale. Ma-
jor changes in the model structure associated with parameter
uncertainty have happened since 2007, where the Bayesian
(Klemedtsson et al., 2008) and the GLUE approach (Lund-
mark, 2008) were introduced and tested. Following the re-
sults of sensitivity analysis in Conrad and Fohrer (2009a,b),
the majority of input parameters was fixed at pre-defined val-
ues in this model setup. The remaining 24 parameters were
selected for the stochastic optimization (Table 2). The first
parameter in Table 2, i.e.ThScaleLog(1), regulates soil heat
flow from the uppermost soil layer. The other parameters
are responsible for biotic system properties such as plant de-
velopment, nutrient uptake, mineralization, nitrification and
denitrification. The parameter space is defined by minimum
(Min) and maximum (Max) values based on plausible rea-
soning. We have chosen mainly soil biotic parameters be-
cause they are highly uncertain due to small and site-specific
data sets. These parameters are most sensitive on the NO3
nitrogen leaching below the rooting zone.

2.3 Calibration method

The CoupModel was optimized using the Bayesian calibra-
tion applied by Van Oijen et al. (2005). The posterior proba-
bility distributionp(θ /D) for the parameter vectorθ is derived
by the likelihood functionp(D/θ ) and the prior distribution
p(θ) of the parameter vector according to:

p(θ/D) = c ∗ p(D/θ)∗p(θ) (1)

Where the value ofc( = 1/p(D)) is independent. The like-
lihoodp(D/θ ) is computed assuming measurement errors are
Gaussian and uncorrelated:
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Table 2. Parameters selected for the stochastic optimization in CoupModel and their initial value and uncertainty ranges.

Property Description Start value Ranges Unit

Min Max
Soil thermal properties:
ThScaleLog (1),xhf (1) Scaling coefficient for the thermal conductivity in soil layer 1 0.5 −0.5 1 –
Plant specific properties:
Specific LeafArea,pl,sp Leaf mass per unit leaf area 6 4 8 g C m−2

RadEfficiency,εL Radiation use efficiency 3.5 2 4 g d.w. MJ−1

NUptFlexibilityDeg,nUptflex Compensatory N uptake from soil 0.3 0.1 0.5 –
NUptMaxAvailFrac,fNupt Fraction of mineral N for uptake 0.04 0.01 0.1 d−1

Decomposition and mineralization:
CN ratio microbes, cnm C:N ratio in microbes 10 9 11 –
Eff Litter1, fe,l1 Efficiency of decay of litter 1 0.15 0.1 0.3 d−1

Eff Litter2, fe,l2 Efficiency of decay of litter 2 0.15 0.1 0.3 d−1

Eff Humus,fe,h Efficiency of decay of humus 0.6 0.4 0.8 d−1

HumFracLitter1,fh,l1 Fraction of C and N from litter 1 to humus 0.2 0.1 0.4 d−1

HumFracLitter2,fh,l2 Fraction of C and N from litter 2 to humus 0.2 0.1 0.4 d−1

Init H N Tot, ih,N Initial total N in humus 500 400 600 g N m−2

Init L1 N Tot, il1,N Initial total N in litter 1 5 4 6 g N m−2

Init L2 N Tot, il1,N Initial total N in litter 2 1 0.5 2 g N m−2

RateCoefHumus,kh Coefficient for the decay of humus 5e-5 1e-5 1e-4d−1

RateCoefLitter1,kl1 Coefficient for the decay of litter 1 0.1 0.01 0.5 d−1

RateCoefLitter2,kl2 Coefficient for the decay of litter 2 0.1 0.01 0.5 d−1

RateCoefSurf L1,ll1 Fraction of above ground residues to litter 1 1 0.05 1 d−1

RateCoefSurf L2,ll2 Fraction of above ground residues to litter 2 1 0.05 1 d−1

Nitrification process:
NitrateAmmRatio,rnitr,amm NO3:NH4 ration for nitrification 1 0.1 1.5 –
NitrificSpecificRate,nrate Specific nitrification rate 0.1 0.08 0.15 d−1

Denitrification process:
DenitDepth,dz Depth where the denitrification capacity ceases −1.5 −1.6 −1.2 m
DenitNitrateHalfSat,dNhalfSat Effect of NO3 concentration on denitrification 10 8 12 mg N l−1

DenitPotentialRate,dpot Potential denitrification rate 0.1 0.05 0.2 g N m−2 d−1

logp(D/θ) = (2)

∑n

i−1

(
−0.5

(
Oi − Si

Mi

)2

− 0.5 log(2π) − logMi

)

Where theSi are model results andOi observations,n is
the number of observations andMi is the standard deviation
or error of measured values. The logarithm of the data like-
lihood (logp(D/θ ) = LogLi) is used to avoid rounding errors
when likelihood values are decreasing with increasing num-
ber of data points (Klemedtsson et al., 2008). We assume
that structural errors are ignored and thus estimates of model
output uncertainty show only the contribution from param-
eter uncertainty (Reinds et al., 2008). A numerical solution
of Eq. (2) is often carried out in the form of a Markov Chain
Monte Carlo (MCMC) approach with a large number of sim-
ulations. The Metropolis-Hastings random walk, a simple
MCMC algorithm, was used to calculate posterior probabil-
ities for an appropriate number of parameter combinations
by randomly stepping through the parameter space. An ad-
equate sampling during MCMC can be achieved by combi-
nation of the number of steps and the step size. If for a new

candidate point the product of the prior probability and the
likelihood is higher than for the current point, the new point
is accepted. The total LogLi is derived from the sum of all
LogLi values of the validation variables in Table 1. This pro-
cedure results in a chain of points in the multi-dimensional
parameter space, where the first 10% of the runs are ignored.
The remaining chain includes all accepted parameter points
which are used to calculate the posterior distribution of each
parameter and correlation and covariance matrices.

In practical application, each grassland system was opti-
mized separately in a “single-plot” calibration. The posterior
distribution with its mean value and variability were derived
for each optimized parameter depending on the selected out-
put variables. A number of 20 000 simulation runs were car-
ried out within the same parameter space for the tested sys-
tems according to Table 2.

3 Results

3.1 Posterior parameter distributions

The Bayesian calibration provides the joint posterior distri-
bution, which contains also correlations between parameters.
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Table 3. Prior mean, posterior mean and coefficient of variation (CV) of the optimized parameters for both grassland plots at the Karkendamm
site.

Property Prior mean Non-fertilized plot (N0) Highly fertilized plot (N300)
Post mean CV (%) Post mean CV (%)

Soil thermal properties:
ThScaleLog 1),xhf (1) 0.25 −0.50 0.9 0.66 1.5
Plant specific properties:
Specific LeafArea,pl,sp 6 6.8 0.6 4.0 0.6
RadEfficiency,εL 3 3.7 0.3 3.9 0.3
NUptFlexibilityDeg,nUptflex 0.3 0.32 1.0 0.38 2.0
NUptMaxAvailFrac,fNupt 0.055 0.006 1.4 0.02 3.5
Decomposition and mineralization:
CN ratio microbes, cnm 10 10.6 0.1 10.3 0.2
Eff Litter1, fe,l1 0.20 0.23 1.1 0.10 2.7
Eff Litter2, fe,l2 0.20 0.15 1.4 0.11 1.1
Eff Humus,fe,h 0.60 0.55 1.0 0.78 1.1
HumFracLitter1,fh,l1 0.25 0.19 0.9 0.21 1.9
HumFracLitter2,fh,l2 0.25 0.23 1.5 0.20 3.1
Init H N Tot, ih,N 500 505 0.4 481 0.7
Init L1 N Tot, il1,N 5 5.2 0.2 4.6 0.3
Init L2 N Tot, il1,N 1.25 0.63 0.1 0.59 3.3
RateCoefHumus,kh 5.5e-5 5.9e-5 0.6 6.6e-5 1.3
RateCoefLitter1,kl1 0.255 0.18 2.0 0.154 5.9
RateCoefLitter2,kl2 0.255 0.303 2.4 0.119 3.1
RateCoefSurf L1,ll1 0.525 0.85 1.0 0.920 0.6
RateCoefSurf L2,ll2 0.525 0.59 3.0 0.930 1.0
Nitrification process:
NitrateAmmRatio,rnitr,amm 0.80 1.38 0.5 1.07 1.9
NitrificSpecificRate,nrate 0.115 0.087 0.5 0.100 0.5
Denitrification process:
DenitDepth,dz −1.40 −1.49 0.4 −1.54 0.4
DenitNitrateHalfSat,dNhalfSat 10 9.8 0.2 10.7 0.2
DenitPotentialRate,dpot 0.125 0.051 3.6 0.136 1.8

In this study, we focus on the marginal distributions ex-
pressed as posterior mean and coefficient of variation (CV)
for the individual parameters. The variability or dispersion
of a parameter is expressed as CV (= standard deviation di-
vided by the mean), which is low in case of CV<1 (100%).
Broad prior distributions shall narrow down with low CV val-
ues leading to reduced parameter uncertainty when measure-
ments are conclusive. For most parameters, differences be-
tween the posterior mean occurred for both systems forced
by the observations according to Eq. (2), even though same
prior mean values were assumed (Table 3). Parameters with
similar posterior mean values indicate a low sensitivity on
individual parameters from the data behind for each system.
This was found e.g. for the factor of the compensatory N
uptake from different soil layers (NUptFlexibilityDeg), the
CN ratio of the microbes (CN ratio microbes), the decay effi-
ciency of litter pool 2 (Eff Litter2), the carbon (C) and N frac-
tions transferred from litter pools 1 and 2 to the humus pool
(HumFracLitter1, HumFracLitter2) and the initial N content
in litter pool 2 (Init L2 N Tot). In this study, the CV var-

ied between 0.1 and 3.6% emphasizing a low variability of
selected parameter values that were robust during optimiza-
tion. The highest difference between the two grassland sys-
tems was found for the scaling factor of the thermal conduc-
tivity ThScaleLog(1), but with minor influence on the model
efficiency (RMSE,R2) for soil temperatures (Table 4). Re-
maining parameters differed in their posterior mean values
between both systems, especially for plant specific parame-
ters that are linked to the biomass production (RadEfficiency,
Specific LeafArea), and for the denitrification (DenitPoten-
tialRate). In general, the dispersion of the parameters (CV)
was higher for the N300 than for the N0 plot.

3.2 Comparison with measurements

The total LogLi according to Eq. (2) was used as objective
function to find the accepted simulations among 20 000 runs.
Table 4 shows the resulting modeling efficiency of the 23 val-
idation variables for both systems. The root mean squared
error (RMSE) and the coefficient of determination (R2) were
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Table 4. R2 and RMSE values for the comparison between simu-
lated mean of the accepted runs and the observed values.

Efficiency measure RMSE R2

System N0 N300 N0 N300
Soil temperature(◦C days)
0.05 m 1.64 1.46 0.93 0.94
0.10 m 1.38 1.26 0.95 0.95
0.15 m 1.25 1.11 0.95 0.96
Soil water content (Vol.%)
0.10 m 6.45 5.52 0.60 0.59
0.30 m 6.73 5.05 0.34 0.51
0.40 m 3.04 3.83 0.85 0.91
0.50 m 10.66 4.77 0.35 0.55
0.60 m 6.85 2.23 0.95 0.94
0.70 m 12.6 7.58 0.41 0.57
0.80 m 7.56 5.18 0.43 0.72
Soil water tension (hPa)a

0.30 m 94 448 0.44 0.43
0.50 m 21 349 0.30 0.19
0.70 m 20 156 0.25 0.10
Groundwater level (m)
Nearest point 0.15 0.21 0.41 0.39
Nmin(g N m−2)
0–0.3 m 1.12 8.89 0.12 0.06
0–0.6 m 2.29 10.37 0.28 0.01
0–0.9 m 2.66 7.69 0.0005 0.03
NO3 N (g N m−2)
0–0.3 m 0.54 6.69 0.01 0.04
0–0.6 m 0.52 6.21 0.006 0.0005
0–0.9 m 0.54 8.45 0.03 0.14
NH4 N (g N m−2)
0–0.3 m 1.37 2.79 0.24 0.03
0–0.6 m 2.43 1.80 0.31 0.01
0–0.9 m 2.83 1.93 0.20 0.04
NO3 N concentration(mg N l−1)
Seepage period 3.37 22.1 0.02 0.14
Denitrification(g N m−2)
(total) 0.0004 0.002 0.19 0.21
Harvested carbon(g C m−2)
(cumulative) 71 730 0.27 0.008

a not optimized during the Bayesian calibration; posterior compari-
son to validate soil water conditions
R2: coefficient of determination (1 or−1 [0; 1 or−1]; RMSE: root
mean square error (0[−∞; +∞])

used to compare simulated mean values with the mean value
of the measurements. Soil temperatures were simulated well
for all depths with R2>0.93. The RMSE varied between 1.11
and 1.64 with lowest deviations for the depth of 0.15 m in
both systems, but with better values for N300 than N0. The
agreement between modeled and observed soil water con-
tents differed inside soil withR2 values from 0.43 (depth of
0.30 m) to 0.95 (depth of 0.60 m). The RMSE value was
lowest in the depth of 0.40 m, and higher RMSE>10 were
found for the N0 system in depths of 0.50 and 0.70 m. The
groundwater level agreed satisfactorily with measurements
from the nearest observation point withR2 values between
0.41 (N0) and 0.39 (N300). However, the model could not
match the observed dynamic for both systems. But a lower
RMSE value was achieved for the N0 than the N300 plot.

Soil water tensions, which represented mean values for the
mown grassland plot during summer 1998 and 1999, were
compared with model results for both fertilization levels in
30, 50 and 70 cm depth (Fig. 1). Model results were highly
variable with soil water tensions between +146 hPa (satu-
rated) and−2000 hPa (≈pF 3.3 in 30 cm depth). Contrary to
the model outcome, measured soil water tension was lowest
with −117 hPa (≈pF 2.1) at a depth of 30 cm, where also the
best agreement between observation and model was achieved
regardingR2=0.44 (N0) and 0.43 (N300) (see Table 4).
RMSE values decreased with increasing depth, which indi-
cated lower variability in the modeled results for deeper soil
layers. Uncertainty was higher during summer than spring
in both model and observation. Differences between Coup-
Model and field data were based on model limitations re-
garding slanted soil layers and the used water retention curve
from the laboratory investigation. Fixed parameter values for
each soil layer are possibly not representing heterogeneous
field conditions with highly variable water contents within
the field replicates (Karrasch, 2005). Secondly, measure-
ments taken with a puncture tensiometer are biased, the tech-
nique must be installed carefully to prevent pressure changes
in the tube during needle injection. The accuracy of the de-
vice is not as high as in systems with an in-site manometer or
pressure sensor (Smith and Mullins, 2001). Systematic un-
derestimation of actual tensions by up to 23 hPa was found
for single-puncture tensiometer readings with a maximum er-
ror of approx. 10% (Greenwood and Daniel, 1996).

The comparison of daily simulated mean values for the
soil mineral N with the measurements showed only low co-
efficients of determinationR2<0.31 (Table 4) which did not
suggest some evidence for an under- or overestimation. Soil
mineral N contents between 0–0.90 m are shown in Fig. 2 in-
dicating an overestimation of both the NH4 nitrogen in the
N0 plot and the NO3 nitrogen content in the N300 system.
In general, RMSE values were lower for the non-fertilized
plot than for the N300 (Table 4) due to overestimations in
CoupModel associated with the NO3 nitrogen content in the
highly fertilized system. Modeled peaks in the right charts of
Fig. 2 can identify the applied mineral fertilizer in the N300
plot. The few observations indicated only that the soil min-
eral content in spring was higher than in autumn. Deviations
between modeled and measured results were possibly caused
by an inadequate plant N uptake and soil nitrogen transfor-
mation (e.g. denitrification, see below) in CoupModel during
summer.

Consequently, the total mineral N was also overestimated
by CoupModel indicating much more uncertainty in the pre-
diction of soil N dynamics of highly fertilized systems due
to the input of mineral nitrogen. CoupModel considers
mineral fertilizer input on the soil surface, where the frac-
tion of NH4 nitrogen (the rest is NO3) and specific disso-
lution rate of the applied commercial fertilizer must be de-
fined. In our study, fixed values for fractioning and dissolu-
tion rate were used in CoupModel, which was maybe not
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Fig. 1. Mean values of the soil water tensions (in hPa) in 30, 50 and 70 cm depth for the(a) non-fertilized and(b) highly fertilized mown
grassland. Simulated results (solid line) are shown within the 5th and 95th percentiles and observations (♦) of the mown grassland with their
standard deviations.

representative for the applied Ca(NH4NO3) fertilizer. Fur-
ther reason for the overestimation of modeled NO3, which
was not observed for NH4, could be the uptake of mineral N
by the grass vegetation that prefers ammonium (Maci et al.,
2007). The denitrification process is also a possible sink for
soil NO3 nitrogen. This gaseous nitrogen loss was very likely
underestimated in the N300 system by CoupModel. The
NO3 nitrogen content was reproduced better in the N0 plot
than the NH4 nitrogen content, which was possibly caused by
an underestimated nitrification rate. Reason for that can be
found in the soil NO3 nitrogen concentrations that were seen
as very uncertain with highly variable observations (Fig. 3).
Concerning this, the simulated mean of the NO3 nitrogen
concentration was forced to be within the standard deviation
of the measurements during modeling. For the N0 system
the simulated mean was only 94% (4.6 mg NO3 N l−1) of the
measured mean (4.9 mg NO3 N l−1) indicating that too much
NH4 nitrogen remained in the soil profile.

TheR2 value of the averaged NO3 nitrogen concentrations
was higher for the N300 (0.14) than for the N0 plot (0.02),
which was maybe caused by less variable observations from
day to day in the highly fertilized system. It can be discussed
if the R2 value is an adequate performance measure for soil
solution concentrations without considering data variability
in model and measurements. The difference between mod-
eled (24 mg NO3 N l−1) and observed mean (11 mg NO3
N l−1) of the N300 plot amounted to 125% demonstrating an
overestimation of simulated soil NO3 nitrogen. The RMSE
value was six times lower in the N0 plot, indicating also a
good agreement for the non-fertilized system. One impor-
tant process to reduce soil NO3 nitrogen in CoupModel is
the denitrification process, which was compared with mea-
surements from a temporary cutting period of a non-fertilized
grassland plot (Fig. 4).

The RMSE from the N0 system was lower than for N300,
while theR2 values were similar for this short period. In
Fig. 3, the N300 plot shows a highly variable denitrification
amount according to the input of mineral N and humid win-
ter conditions. The denitrification decreased during summer
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Fig. 2. Mean values of the soil total mineral, nitrate and ammonium nitrogen in the a) non-fertilized and b) highly fertilized grassland plots.
Simulated results (solid line) are shown within the 5th and 95th percentiles and observations (�) with their standard deviations.

due to lower soil water contents and significant N uptake for
biomass production.

Modeled annual harvested C was compared with calcu-
lated values derived from observed pure grass biomass be-
tween 1997–1999 and estimations for 2000 and 2001 for
the N0 plot (Ingwersen, 2002; see Table 1). The compar-
isons between harvested C for the N300 plot was based on
estimations from harvested clover-grass biomass fertilized
with 300 kg N ha−1 year−1 (Trott, 2003). The agreement
was better for the N0 plot (R2=0.27) than for the N300 plot
(R2=0.008) indicating that the model was not able to repro-
duce realistic annual harvest amounts in both cases (Table 4).
Biomass production was overestimated because the N uptake
by plants was much less important than a good reproduction
of measured soil N contents. The comparison with estimates
from harvested clover-grass, which shows unstable harvest
yields with increasing N fertilization due to the decline of
clover (Herrmann et al., 2005), could be a second reason for
the low agreement regarding the harvested C in the N300
system.

In Fig. 5, simulated NO3 nitrogen leaching below the root-
ing zone located between 0.60 and 0.65 m depth was com-
pared to the model “B̈uchter” (Büchter, 2003) for the seep-
age periods. For the non-fertilized plot N0, CoupModel cal-
culated an averaged leaching amount of 18 kg NO3 N ha−1

compared to 10 kg NO3 N ha−1 by the model “B̈uchter”. Av-
eraged NO3 nitrogen leaching for the highly fertilized sys-
tem in CoupModel added up to 49 kg NO3 N ha−1, which
was 63% higher than the leaching of 30 kg NO3 N ha−1 in
the model “B̈uchter”. Major differences were found in the
dynamic of the leaching, which showed more peaks in the
CoupModel realizations and in the drainage water amount.
CoupModel accounted a 65% higher drainage water amount
for the N0 plot and 16% lower for the N300 system, com-
pared to a standard value of 180 mm by the model “Büchter”.
An additional reason for an underestimation by the model
“Büchter” is the failure of the suction cups methodology to
capture the whole NO3 nitrogen leachate in available soil
pores. This sampling method for soil water solutions is
widely used in unstructured soils, but it showed a tendency

Adv. Geosci., 21, 13–24, 2009 www.adv-geosci.net/21/13/2009/



Y. Conrad and N. Fohrer: Application of the Bayesian calibration methodology 21

Fig. 3. Mean values of the soil NO3 nitrogen concentration in 60 cm depth for the(a) non-fertilized and(b) highly fertilized grassland plots.
Simulated results (solid line) are shown within the 5th and 95th percentiles and observations (�) with their standard deviations.

to underestimate N concentrations on an average of 8% com-
pared to free drainage experiments (Erhart et al., 2007). Rea-
sons for this deviation are possible anion absorption and
the small cross-sectional area of the ceramic cups, which
is maybe not representing spatial soil variability. An error
of ±30% or more should be expected in field studies, lit-
erature values must be handled with care, unless a repre-
sentative number of ceramic suction cups are installed. Ac-
cordingly, NO3 nitrogen leaching has to be interpreted care-
fully, if obtained with this sampling method. Korsaeth et
al. (2003) modeled the NO3 leaching for grassland in Nor-
way indicating that 5–23% of the N input can be leached
out depending on soil, 98% of this amount was nitrate. In
our study, where an additional atmospheric N deposition of
20 kg N ha−1 year−1 was assumed, the NO3 nitrogen leach-

ing of the non-fertilized plot amounted to 90% of the N input
and approx. 15% for the N300 system. Changes in the soil
N storage were not considered in this simple N balance.

4 Conclusions

The understanding of ecosystem processes involves an in-
creasing model complexity with non-linear structural equa-
tions and useful methods for automated parameter estima-
tion. Uncertainties in model parameterization and measure-
ment have to be considered, but in practice rigorous uncer-
tainty analysis is still rare (Stow et al., 2007). Model applica-
tions often fail to do an uncertainty assessment because many
“competing methods” make it difficult to choose the most
appropriate method and interpret the results (Pappenberger
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Fig. 4. Total denitrification in the non-fertilized (dashed line) and highly fertilized (solid line) grassland plots. Simulated results are shown
within the 5th and 95th percentile and observations (�) of a non-fertilized system.

Fig. 5. NO3 nitrogen leaching below the rooting zone (60–65 cm) in the(a) non-fertilized and(b) highly fertilized grassland plots. Coup-
Model results (solid line) are shown within the 5th and 95th percentiles compared to the model “Büchter” (Büchter, 2003) (♦).
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and Beven, 2006). Stochastic optimization can help to di-
minish the difficulties in terms of parameter estimation. In
this paper, the applicability of the Bayesian calibration tech-
nique was demonstrated for the parameter optimization in the
CoupModel. Efficient estimates of the most-likely parameter
set and its underlying frequency distribution were provided
during optimization runs. We performed two case studies
demonstrating effects of multiple validation data on the pa-
rameter uncertainty. In spite of considerable differences be-
tween model and measurements, the prediction uncertainty
associated with the parameter estimates is low, indicating
that the main part of the uncertainty originates from the resid-
uals between measurements and model predictions. Satisfy-
ing results were found for modeled abiotic properties, i.e.
soil temperature, water content, water tension and ground-
water level. On the whole, CoupModel results agreed bet-
ter with observations for non-fertilized than highly fertilized
conditions regarding soil N dynamics and harvested C. Un-
certainty was highest for modeled soil NO3 nitrogen concen-
trations in both systems, plausible results were also found
for leached NO3 nitrogen. One reason for the mismatch be-
tween model and measurements could be that simulated re-
sults were based on one soil profile, whereas observations
were taken over a larger area ranging from few centimeters
(e.g. installed equipment for soil temperature and water con-
tent) to several meters (e.g. mean values for harvested C and
soil mineral N). Further work must be done to understand the
limitation of this approach because of its subjective choice of
the probability distribution and likelihood measure.
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Futterbau/̈Okologischer Landbau, 37, 1–109, 2005.

Lewis, D. R., McGechan, M. B., and McTaggart, I. P.: Simu-
lating field-scale nitrogen management scenarios involving fer-
tiliser and slurry applications, Agr. Syst., 76, 159–180, 2003.

Lundmark, A.: Monitoring Transport and Fate of De-icing Salt in
the Roadside Environment – Modelling and Field Measurements.
TRITA-LWR PHD 1038, PhD thesis, KTH, Stockholm, Sweden,
1–47, 2008.

Lundmark, A. and Jansson, P.-E.: Estimating the Fate of De-icing
Salt in a Roadside Environment by Combining Modelling and
Field Observations. Water Air Soil Poll., 195, 215–232, 2008.

Maci, A., Rroço, E., Kosegarten, H., and Mengel, K.: Nitrogen
turnover in bare soil planted subsequently with grass as inves-
tigated by electro-ultrafiltration (EUF), J. Plant Nutr. Soil Sci.,
170, 81–86, 2007.

Monteith, J. L.: Evaporation and Environment, in: The State and
Movement of Water in Living Organisms, edited by: Fogg, G.
E., 19th Symp. Soc. Exp. Biol., Cambridge: The Company of
Biologists, 205–234, 1965.

Norman, J., Jansson, P.-E., Farahbakhshazad, N., Butterbach-Bahl,
K., Li, C., and Klemedtsson, L.: Simulation of NO and N2O
emissions from a spruce forest during a freeze/thaw event using
an N-flux submodel from PnET-N-DNDC model integrated to
CoupModel, Ecol. Model., 216, 18–30, 2008.

OECD: Environmental Indicators for Agriculture: Methods and Re-
sults. OECD, Paris, France, 2001.

Pappenberger, F. and Beven, K. J.: Ignorance is Bliss: Or Seven
Reasons Not o Use Uncertainty Analysis, Water Resour. Res.,
42(5), WO5302, doi:10.1029/2005WR004820, 2006.

Reinds, G. J., Van Oijen, M., Heuvelink, B. M., and Kros, H.:
Bayesian calibration of the VSD soil acidification model us-
ing European forest monitoring data, Geoderma, 145, 475–488,
2008.

Scholz, D.: Bodenwasserhaushalt unterschiedlicher pflanzen-
baulicher Produktionssysteme während der Vegetationsperiode
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