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Abstract. This paper addresses the problem of the relation-
ship between skill scores and forecast rainfall relative errors.
The problem is approached by using synthetic time series of
rainfall data representing the observations. It is assumed that
the magnitude of the relative error is known. The forecasts
are constructed by adding errors to the observations. We use
a threshold to dichotomise forecasts and observations to ob-
tain the skill scores. We perform 1000 simulations for each
error magnitude in order to obtain the mean values and un-
certainties of the scores.

We consider two different precipitation regimes, and we
show the influence of these regimes on the precipitation. We
find that the relationship between forecast errors and skill
scores is strongly influenced by the event frequencies, which
in turn depend on the precipitation regime. We find that only
when the event frequency of the two regimes is made sim-
ilar by changing the threshold, the relationship between the
scores and relative errors is similar. This suggests that a com-
parison between two forecast precipitation datasets should
account for the difference (if any) in precipitation regimes.

1 Introduction

The computation of forecast scores has become more
widespread in recent years for many reasons (Jolliffe and
Stephenson, 2003), whereas score uncertainty is rarely eval-
uated (Jolliffe, 2007). Even when uncertainty is computed,
the meaning behind such scores is not always understood
(Mason, 2008). In fact, computing scores gives rise to the
question: “does the score value indicate a good forecast?”
This question has recently been considered by Mason (2008),
who discussed the probability that useless forecasts may have
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scored simply by chance. One of the qualities of a score is the
effectiveness, defined as the property of a score to follow the
differences between observation and forecast (Mason, 2008).
Another question that arises is whether the dependence of
scores on errors is related to precipitation regimes. The aim
of this paper is to try to answer these questions.

Since forecast errors are unknown, one way to answer the
question is to use synthetic data. In this paper we use time se-
ries instead of gridded data, for reasons given in the data and
methods section (Sect. 2). Results are presented in Section 3
and conclusions are drawn in Sect. 4.

2 Scores, data and methods

In this section we first describe the scores. Then we describe
the data and methods used to evaluate the relationship be-
tween scores and forecast relative errors.

2.1 Scores used in verification

In a dichotomous forecast, a contingency table shows the fre-
quency of “yes” and “no” forecasts and occurrences. Table 1
gives the combinations of hits (a), misses (b), false alarms (c)
and correct negatives (d).

The analysis presented here is limited to two scores, the
equitable threat score (ETS) and the Hanssen-Kuipers skill
score (KSS). Their mathematical formulations are expressed
below:

ETS=
a − e

a + b + c − e
(1)

where

e =

(
(a + b) (a + c)

a + b + c + d

)
(2)

is the probability of having hits by chance. ETS is commonly
used to evaluate forecast skill, especially precipitation (Ac-
cadia et al., 2003; Hamill, 1999; Hamill and Juras, 2006).
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Fig. 1. Precipitation time series for the “very dry” situation.

Fig. 2. Precipitation time series for the “dry” situation

The KSS was introduced by Hanssen (1965) and it is usu-
ally used in the verification of meteorological fields (Briggs,
2005; Accadia et al., 2003; Woodcock, 1976). KSS is de-
fined as:

KSS=
(ad − bc)

(a + c) (b + d)
(3)

Both of these scores are equitable, i.e., they will give the
same value for two unskilful forecasts. Both of them are skill
scores, i.e., they account for random chance, persistence or
climatology. Although equitability should be taken into ac-
count, Hamill and Juras (2006) suggested that climatology
can affect the ETS. This aspect deserves further investiga-
tion, and is examined in Sect. 3.

Table 1. Contingency table used to compute the scores.
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2.2 Observations and forecasts

The approach used in this paper is to generate synthetic data.
In particular, we use time series instead of gridded precipi-
tation in order to avoid problems related to the presence of
a grid. Among these, the problems of multiplicity (Livezey
and Chen, 1983), the double penalty effect (Mass et al., 2002)
and different climatology on the same grid can affect skill
scores (Hamill and Juras, 2006).

We produced two time series, one referred to as “very dry”
(Fig. 1) and the other “dry” (Fig. 2). It is important to under-
stand how the event frequency may impact the scores. More
common situations are treated in Tartaglione (2009). In this
way we can also assess how errors affect ETS and KSS for
rare events.

The time series were produced by means of a multiplica-
tive cascade algorithm (Flores, 2004). From an initial level
i=0, an initial water massM is distributed on a number of
cells at successive levels, by assigning random numbers and
imposing mass conservation. After a number of cascades,
we arrive at a daily distribution of water such as that shown
in Figs. 1 and 2. The elements of the single time series are
uncorrelated with each other.

The distinction between rain and no-rain events was per-
formed by assigning a threshold of 0.5 mm/day. In such a
case, the “very dry” situation had 68 events over-threshold
and the “dry” situation 267. The event frequencies are∼0.02
and ∼0.07, which indicate rather rare frequencies. How-
ever, we would stress how even small differences between
the event frequencies can alter the evaluation of scores, espe-
cially when the events are rare. We shall see that the number
of over-threshold events plays a key role in determining the
value and uncertainty of the scores, as already suggested by
Hamill and Juras (2006) and Baldwin and Kain (2006). Our
interest here is to understand how scores are related to errors.
We construct a simple error model and add the errors to the
observations in order to simulate forecasts. We wish to know
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the magnitude of the errors. Let us define the relative error
in the following way:

εr =

∣∣∣∣f − o

o

∣∣∣∣ (4)

whereo represents the observations andf is the forecast. In
practice, our relative errors span from 0.1 to 1, corresponding
to a span in percentage errors of 10% to 100%. The absolute
error is defined as the observation minus the forecast on the
same day, and is added to the observation according to

f = o + (−1)n · o · εr , (5)

wheren is the pair (0, 1). The value ofn sets the error sign,
which was randomly assigned to the elements of the time se-
ries. The value ofn was obtained by using a uniform random
number generator. For each realization, the algorithm chose
to assign zero when the random number was less than 0.5
and 1 otherwise. The assignment of the error signs was per-
formed 1000 times. In this way we can perform a statistical
evaluation of scores and compute the score uncertainties.

Since for each sample we had almost 50% of 0 (or+) and
50% of 1 (or−), the forecast result was unbiased in the long
run, i.e., the bias oscillated around the value 1. Once the
scores were computed, the 1000 samples of ETS and KSS
were plotted. This yielded Gaussian distributions, for which
we computed the mean and the standard deviation.

A note of caution is required here. We performed some
experiments with different time series and obtained similar
results. However, particular distributions of the precipitation
might lead to very specific situations, which should be treated
carefully.

3 Results

We show the trend of ETS and KSS as a function of the rel-
ative errors for the two time series considered, in Figs. 3 and
4 respectively. For the two time series examined here, the
“very dry” situation gives lower errors than the “dry” situa-
tion, when a fixed score is considered. This means that when
we are evaluating a forecast in a precipitation regime that has
a low event frequency, the resulting score will indicate a low
forecast error. Hence, for a given relative error, the expected
score should be higher in the “very dry” situation relative to
the “dry” situation.

It is interesting to note the length of the error bars in the
two figures. The error bars represent the score uncertainties,
and for the “very dry” situation they are longer than for the
“dry” one. The number of over-threshold events seems to
affect the score value and the score uncertainty. This means
that a single verification, such as a real forecast verification,
might give a result that is within the error bar. To overcome
this problem, the score uncertainties are computed in various
ways (see Jolliffe (2007) for a review of methods of assessing
uncertainty).

Fig. 3. Equitable threat score for the “very dry” (upper panel) and
“dry” (lower panel) situations, with a threshold of 0.5 mm/day.

The error bars are particularly long for the KSS (Fig. 4).
Their length increases with the forecast percentage relative
error, whereas the ETS uncertainty remains constant. We
also note that the linear relationship between mean score and
forecast relative error tends to disappear for high values of
relative error. This is particularly evident for the KSS.

We do not demand that a score has a linear dependence
on the errors, but one of the properties of a good score is
the effectiveness. Citing Mason (2008): “An effective score
is one which monotonically improves as the distance (how-
ever it is measured) between the forecast and the observa-
tion decreases”. Thus, we can imagine that this monotonic
behaviour should not be in a functional sense, but in a statisti-
cal one. The KSS, composed of mean value and uncertainty,
is certainly not monotonic for high values of the forecast rel-
ative errors, even though its mean is apparently monotonic.

We have analyzed two situations which are climatologi-
cally different, but verified the results using the same thresh-
old (0.5 mm/day). What happens when the threshold of the
“dry” situation is lowered? The values of ETS and KSS as a
function of the percentage relative error, when the threshold
of the “very dry” situation is 0.1 mm/day, are shown in Fig. 5.
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Fig. 4. Same as Fig. 3, but for the Hanssen-Kuipers Skill Score.

The trends of the two scores are very close to each other,
demonstrating that the event frequency is fundamental in the
evaluation of skill scores. This argument was also pointed
out by Baldwin and Kain (2006). These results indicate that
comparing two datasets by means of scores obtained from a
contingency table, and using two different thresholds, leads
to a different evaluation of the two datasets, even though they
have the same relative error.

4 Conclusions

In this work we have shown that the two skill scores, the ETS
and the KSS, depend on the forecast relative errors. Using a
Monte Carlo experiment, we computed a variety of skill ETS
and KSS values for the same magnitude of the forecast rela-
tive error. This was performed on two different precipitation
time series, which represented the observations for two dif-
ferent climatological situations.

The ETS and KSS scores depend on the threshold used to
compute the score. In fact, the scores were computed by as-
signing a threshold for the event occurrence. This threshold
was initially fixed to 0.5 mm/day for both situations consid-

Fig. 5. Equitable threat score and Hanssen-Kuipers score, with the
two situations considered having similar event frequency.

ered. The score values and uncertainties are dissimilar for
the two considered situations. They become similar when
the threshold of the “very dry” situation is reduced to give an
event frequency similar to the “dry” situation. This suggests
that a comparison between two different climatological situ-
ations should be performed using different thresholds. The
results confirm previous findings by Hamill and Juras (2006)
and Baldwin and Kain (2006) on the importance of clima-
tology and event frequencies on the evaluation of forecast
precipitation by means of skill scores.
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