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Abstract. The Microwave Infrared Combined Rainfall Al-
gorithm (MICRA) consists in a statistical integration method
using the satellite microwave-based rain-rate estimates, as-
sumed to be accurate enough, to calibrate spaceborne in-
frared measurements on limited sub-regions and time win-
dows. Rainfall retrieval is pursued at the space-time scale of
typical geostationary observations, that is at a spatial resolu-
tion of few kilometers and a repetition period of few tens
of minutes. The actual implementation is explained, al-
though the basic concepts of MICRA are very general and
the method is easy to be extended for considering innova-
tive statistical techniques or measurements from additional
space-borne platforms. In order to demonstrate the poten-
tiality of MICRA, case studies over central Italy are also dis-
cussed. Finally, preliminary results of MICRA validation by
ground based remote and in situ measurements are shown
and a comparison with a Neural Network (NN) based tech-
nique is briefly illustrated.

1 Introduction

The problem of using satellite remote sensing data to retrieve
rainfall is fairly complicated since presently there is not a
single spaceborne platforms which can carry all the suitable
instruments to ensure all the properties to the rainfall prod-
uct (Levizzani et al., 1995; Vicente et al., 1998; Turk et al.,
1999). From a meteorological point of view, visible (VIS)
and infrared (IR) radiometers can give information on cloud
top layers. On the other hand, microwave (MW) radiometers
can detect cloud structure and rainrate since MW brightness
temperatures (TB’s) are fairly sensitive to liquid and ice hy-
drometeors (Ferraro, 1997). Regarding platforms, Geosyn-
chronous Earth Orbit (GEO) satellites can ensure a cover-
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age with a high temporal sampling, while Low Earth Orbit
(LEO) satellites have the advantage to enable the use of mi-
crowave sensors, but with a major drawback of low tempo-
ral sampling. Therefore, LEO-MW and GEO-IR radiometry
are clearly complementary for monitoring the Earth’s atmo-
sphere and a highly variable phenomenon such as precipita-
tion.

Statistical integration of satellite infrared and microwave
data can be accomplished in several ways (Kummerow and
Giglio, 1995; Bellerby et al., 2000; Miller et al., 2001;
Marzano et al., 2001). On one hand, there is a choice of
what variables (i.e., predictors) to match in order to provide
the final product. A possibility is represented by the direct
combination of MW TB’s and thermal IR (TIR) radiances,
having the advantage to exploit the observable information
without any post-processing and the disadvantage to request
IR and MW measurements matched in space and time. The
latter condition is only satisfied a limited number of times in
a given area if few LEO platforms are considered thus flar-
ing the statistical significance of any empirically-trained re-
trieval algorithm. The feasible approach would be that based
on physically-based retrieval algorithms which, on the other
hand, would need a climatological and microphysical tuning.

In order to avoid these difficulties, one can resort to ap-
proaches whose aim is to combine IR measurements and
MW-based estimates on a cumulative statistical distribu-
tion basis. Indeed, artificial neural network (NN) can
be conveniently applied to the same problem dealing with
empirically-trained algorithms showing comparable perfor-
mances (Hsu et al., 1997; Grimes et al., 2003; Tapiador et
al., 2004a, 2004b).

In this work, the Microwave Infrared Combined Rainfall
Algorithm (MICRA) is presented, based on the statistical in-
tegration of collocated GEO-IR and LEO-MW data accom-
plished on a local scale (Marzano et al., 2003, 2004) and it is
compared with a NN-based algorithm: NEREMIS (NEural
Rainfall Estimation algorithm using Microwave and Infrared
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2. Microwave infrared combined rainfall algorithm 
 
The general idea behind the considered integration 
techniques is to combine the appealing spatial and temporal 
sampling of IR sensors, mounted on geo-stationary 
platforms (GEO-IR), with the higher accuracy of passive 
Low-Earth-Orbit Microwave (LEO-MW) methods for rain-
rate retrieval. The statistical integration techniques are 
applied within a procedure which is supposed to run 
continuously. 
 This procedure is based on a background process and a 
foreground process. A schematic sketch of the block 
diagram and the temporal flow chart of MICRA is shown in 
Figure 1, while detailed equations are described in 
(Marzano et al., 2003; Marzano et al., 2004).  
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Fig. 1.  Schematic sketch of the MICRA block diagram and flow chart. 
 
 i) The first step of the background process consists: in 
estimating the surface rain-rate from available LEO-MW 
measurements by means of either empirical retrieval 
algorithms or inversion schemes based on parametric cloud 
radiative models (inversion step). This enables the 
inversion of a set of brightness temperatures (TB) at 
different frequency and polarization to provide a rain-rate 
product spatially integrated within the nominal area A.  
 ii) The second step of the background process pursues the 
combination of LEO-MW sensor data with data coming 
from GEO-IR sensor in space and time on a global scale 
(collocation step). This step consists in temporally locating 
the GEO-IR data within the past few tens of minutes of the 
LEO-MW data time and to re-map into the geographic 
coordinates both GEO-IR and LEO-MW measurements 
available observations. Note that, since spatial resolution of 
MW data is generally worse than IR ones, a MW field-of-
view of nominal area A generally includes more than one 
IR pixel. As a result of the background process, a data set is 
generated, containing the per-pixel rain-rate retrieved from 
LEO-MW data, the co-located GEO-IR brightness 
temperature and the pixel geo-location. This process is 
continuously ongoing, since new LEO-MW and GEO-IR 
data are continuously ingested depending on available 
satellite platforms.  
 iii) The third step is a foreground process, started to 
derive the R-TIR inverse relationship once the data set has 
been updated. A pre-processing stage is accomplished after 
each background process. The IR retrieval relationships are 

updated every time a new set of combined data have been 
added to the data set relative to that sub-region, and are 
derived using data archived in a time window of several 
hours (integration step). To assure that only the most recent 
rain history is captured and to guarantee a statistical 
significance of the training set, the R-TIR inverse 
relationship for a given sub-region is derived using only the 
most recent combined data.  
 iv) The last step is represented by the prediction of the 
surface rain-rate from IR measurements in a given sub-
region by applying the derived R-TIR algorithm (retrieval 
step). Many attempts have been carried out so far to derive 
this R-TIR relationship, using different techniques such as 
probability matching formulations, regression methods and 
artificial neural networks. Details on the background and 
foreground processes are given section 4. 
 
 
3. Neural rainfall estimation algorithm using 

microwave and infrared sensors 
 
The NEREMIS techniques shares the same methodology of 
MICRA, but uses a Multiply Layer Feed Forward  NN 
architecture as shown in Fig. 2 (Grimes et al., 2003; 
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input the IR TB from GEO-IR sensor and latitude and 
longitude information. 
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The NN is calibrated using input data derived from the 
GEO-IR sensor and output rain-rate retrieved from 
available LEO-MW measurements. This requires, as for 
MICRA, measurements from both IR and microwave 
sensors collocated in space and in time. The calibration 
period has been fixed for this study to 24 hours and the 
validation has been carried on for the following day. In 
particular, the calibration periods are the 24 hours of the 
Jan. 23, 2003, while Jan. 24, 2003 has been retained for the 
validation. 
 There is not any constraint in choosing a calibration 
period. The one day time step has been selected due to the 
length of the precipitation event that has been observed for 
at least tree days.  In case of a short rain event the time step 
could be reduced to few hours.  

Fig. 1. Schematic sketch of the MICRA block diagram and flow chart.

Sensors). As an application, some case studies on the area
of central Italy are discussed, comparing satellite based es-
timates with ground-based remote (radar) and in situ (rain
gauges) observations, in order to demonstrate the potentiality
of monitoring precipitation using the proposed techniques.

2 Microwave infrared combined rainfall algorithm

The general idea behind the considered integration tech-
niques is to combine the appealing spatial and temporal sam-
pling of IR sensors, mounted on geo-stationary platforms
(GEO-IR), with the higher accuracy of passive Low-Earth-
Orbit Microwave (LEO-MW) methods for rain-rate retrieval.
The statistical integration techniques are applied within a
procedure which is supposed to run continuously.

This procedure is based on a background process and a
foreground process. A schematic sketch of the block dia-
gram and the temporal flow chart of MICRA is shown in
Fig. 1, while detailed equations are described in (Marzano
et al., 2003; Marzano et al., 2004).

i) The first step of the background process consists in esti-
mating the surface rain-rate from available LEO-MW
measurements by means of either empirical retrieval
algorithms or inversion schemes based on parametric
cloud radiative models (inversion step). This enables
the inversion of a set of brightness temperatures (TB) at
different frequency and polarization to provide a rain-
rate product spatially integrated within the nominal area
A.

ii) The second step of the background process pursues the
combination of LEO-MW sensor data with data com-
ing from GEO-IR sensor in space and time on a global

scale (collocation step). This step consists in tempo-
rally locating the GEO-IR data within the past few tens
of minutes of the LEO-MW data time and to re-map into
the geographic coordinates both GEO-IR and LEO-MW
measurements available observations. Note that, since
spatial resolution of MW data is generally worse than
IR ones, a MW field-of-view of nominal area A gen-
erally includes more than one IR pixel. As a result of
the background process, a data set is generated, con-
taining the per-pixel rain-rate retrieved from LEO-MW
data, the co-located GEO-IR brightness temperature and
the pixel geo-location. This process is continuously on-
going, since new LEO-MW and GEO-IR data are con-
tinuously ingested depending on available satellite plat-
forms.

iii) The third step is a foreground process, started to de-
rive the R-TIR inverse relationship once the data set has
been updated. A pre-processing stage is accomplished
after each background process. The IR retrieval rela-
tionships are updated every time a new set of combined
data have been added to the data set relative to that sub-
region, and are derived using data archived in a time
window of several hours (integration step). To assure
that only the most recent rain history is captured and
to guarantee a statistical significance of the training set,
the R-TIR inverse relationship for a given sub-region is
derived using only the most recent combined data.

iv) The last step is represented by the prediction of the sur-
face rain-rate from IR measurements in a given sub-
region by applying the derived R-TIR algorithm (re-
trieval step). Many attempts have been carried out so
far to derive this R-TIR relationship, using different
techniques such as probability matching formulations,
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Fig. 2. Neural Network architecture for rainfall estimation.

regression methods and artificial neural networks. De-
tails on the background and foreground processes are
given Sect. 4.

3 Neural rainfall estimation algorithm using microwave
and infrared sensors

The NEREMIS techniques shares the same methodology of
MICRA, but uses a Multiply Layer Feed Forward NN archi-
tecture as shown in Fig. 2 (Grimes et al., 2003; Tapiador et
al., 2004b). It is a four layers network using as input the IR
TB from GEO-IR sensor and latitude and longitude informa-
tion.

The NN is calibrated using input data derived from the
GEO-IR sensor and output rain-rate retrieved from avail-
able LEO-MW measurements. This requires, as for MICRA,
measurements from both IR and microwave sensors collo-
cated in space and in time. The calibration period has been
fixed for this study to 24 h and the validation has been carried
on for the following day. In particular, the calibration periods
are the 24 h of the 23 January 2003, while 24 January 2003
has been retained for the validation.

There is not any constraint in choosing a calibration pe-
riod. The one day time step has been selected due to the
length of the precipitation event that has been observed for
at least tree days. In case of a short rain event the time step
could be reduced to few hours.

The validation of NEREMIS has been carried on in the
smaller area of central Italy due to data availability prob-
lem. The performances of the trained neural network will
be shown in Sect. 4.

4 Case studies and preliminary validation

The MICRA technique has been tested on a few case stud-
ies characterized by intense and persistent rainfall over the
Mediterranean basin. The LEO-MW data are provided by
Special Sensor Microwave Imager (SSM/I) on board of the
three Defense Meteorological Satellite Program (DMSP)
platforms. LEO-IR data are provided by the Visible Infrared
Spinning Scan Radiometer (VISSR) on board of the opera-
tional European geostationary satellite METEOSAT.
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Fig. 4.  Top: Rain rate estimated by NEREMIS for 24 January 2003, 23:30 
UTC. Bottom: 24-hour accumulated rain as computed from 1-day time 
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the 24 hours of Jan. 24, 2003, a large amount of rain has 
fallen near the costs of UK. The effects of the just 
mentioned convective activity over Tuscany are still 
visible. 
 For the same case study the NEREMIS estimates are 
shown. In Fig. 4 the instantaneous rain rate for 23:00 UTC 
and the 24 hours accumulated rain are show for central 
Italy. Comparing Figure 2 and Figure 3 for the 24 hours 
accumulated rain the shape and the intensity of the rain 
fields are in fairly good agreement, although the spatial 
domain is limited. The instantaneous rain rate field 
estimated for the 23:30 UTC by MICRA and NEREMIS 
show a similar shape, but the intensity is slightly different.   
 In the top panel of Fig. 5 is presented the 02:00 UTC 
product for the case study of May 20, 2003. Two areas with 
intense precipitation are distinguishable, the larger over 
Poland, while the other over Germany. A map of 24-hour 
accumulated rain for this case study is illustrated in the 
bottom of Figure 5. As the meteorological situation has 
developed south-eastward, the largest amount of 
accumulated rain was found in Northern Italy. Indeed, flash 
floods were reported near the cost of North-eastern Italy 

Fig. 3. Top: Rain rate estimated by MICRA for 24 January 2003,
23:30 UTC. Bottom: 24-hour accumulated rain as computed from
1-day time series of MICRA rain rate estimates for 24 January 2003.

The first case study we have analyzed occurred at the end
of January 2003. In the top of Fig. 3 is shown rain rate over
the Mediterranean basin as estimated by the current imple-
mentation of MICRA at 23:30 UTC of 24 January 2003. It
is evident a large convective cell developing over Tuscany.
Such a product is available every time a METEOSAT-VISSR
image is released. By simply integrating a day-long time se-
ries of these estimated rain rates, we are able to provide 24-
hour accumulated rain over the same area, as illustrated in
the bottom of Fig. 3. In the 24 h of 24 January 2003, a large
amount of rain has fallen near the costs of UK. The effects of
the just mentioned convective activity over Tuscany are still
visible.

For the same case study the NEREMIS estimates are
shown. In Fig. 4 the instantaneous rain rate for 23:30 UTC
and the 24 h accumulated rain are show for central Italy.
Comparing Figs. 2 and 3 for the 24 h accumulated rain the
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Fig. 4. Top: Rain rate estimated by NEREMIS for 24 January 2003,
23:30 UTC. Bottom: 24-hour accumulated rain as computed from
1-day time series of NEREMIS rain rate estimates for 24 January
2003.

shape and the intensity of the rain fields are in fairly good
agreement, although the spatial domain is limited. The in-
stantaneous rain rate field estimated for the 23:30 UTC by
MICRA and NEREMIS show a similar shape, but the inten-
sity is slightly different.

In the top panel of Fig. 5 is presented the 02:00 UTC
product for the case study of 20 May 2003. Two areas
with intense precipitation are distinguishable, the larger over
Poland, while the other over Germany. A map of 24-hour
accumulated rain for this case study is illustrated in the bot-
tom of Fig. 5. As the meteorological situation has developed
south-eastward, the largest amount of accumulated rain was
found in Northern Italy. Indeed, flash floods were reported
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near the cost of North-eastern Italy during 20–21 May 2003.
Although qualitative results are encouraging, a systematic
validation would be needed. A way to pursue this goal is
by comparison with ground based remote (radar) and in situ
(raingauge networks) measurements available for the areas
under investigation, as illustrated in Fig. 6. Unfortunately,
both data sets were not available during the presented case
study.

A preliminary example of ground validation with radar
measurements is presented in Fig. 7. Radar data (top) were
collected by the S. Pietro Capofiume unit, owned by the Re-
gional Environmental Agency of Emilia Romagna (ARPA-
SMR), and processed by the Regional Meteo-hydro Service
(SIM). At radar original resolution (order of 1 km), differ-
ences in rate rates of one order of magnitude are found with
respect to MICRA estimates (bottom).
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Fig. 6. Available measurements from ground-based radar and rain-
gauge networks are used in the validation of MICRA.

However, a meaningful comparison has to take into ac-
count the fact that rain rate estimates by MICRA are lim-
ited by the relatively poor spatial resolution of both GEO-IR
and LEO-MW measurements. Thus, radar spatial resolution
needs to be degraded to the resolution achievable by satellite
(order of 10 km).

If we average radar measurements in Fig. 7 to match the
satellite pixel resolution, and we consider only the area cov-
ered by the radar beam, we obtain what shown in Fig. 8. Now
the qualitative comparison looks much better: areas of in-
tense rain are fairly well detected and the difference of rain
rate values is significantly reduced. Average errors are of the
order of 30% with an overall trend to underestimate the radar
estimates.

From these first results it seems that the present implemen-
tation of MICRA tends to underestimate rain rates values.
Further analysis is needed in order to optimize the algorithm
parameterization, such as choices of sub-region size, spac-
ing and look-back time lag. Results for NEREMIS show a
similar behavior.

5 Summary and future developments

The basic concepts of the MICRA technique have been in-
troduced together with those of the NN based algorithm
NEREMIS. A couple of case studies over the Mediterranean
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Fig. 7. A comparison between rain rates as measured by ground-
based radar (top) and satellite-based MICRA technique (bottom).
Original radar resolution, about 1 km, is shown.
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Fig. 8. Same comparison as Figure 7, where radar data (top) have been 
averaged to match the satellite pixel resolution, and only the MICRA 
estimates within the area covered by the radar beam are considered 
(bottom). 

 
 

5. Summary and future developments 
 
The basic concepts of the MICRA technique have been 
introduced together with those of the NN based algorithm 
NEREMIS. A couple of case studies over the 
Mediterranean basin have been discussed, through the 
analysis of rain rate and accumulated rain fields as 
estimated by MICRA and NEREMIS. In our first attempt of 
validation of the MICRA technique, we found encouraging 
results concerning the capability of the algorithm to detect 
the raining cells. 
 From a quantitative point of view, MICRA seems to 
underestimate rain rate values when compared to ground 
based radar measurements. Possible sources of 
underestimation might be related to algorithm 
parameterization, such as the choice of sub-region size and 
spacing or the look-back time lag, whose optimum values 
have to be investigated in deeper detail. 
 A systematic validation of MICRA and NEREMIS 
with ground-based measurements is planned, but their 
intercomparison of estimated rain field shows encouraging 
agreements. Inclusions of data derived from other sensors, 
like MODIS and AMSR, are also foreseen. 
 Once that the algorithms have been tested and 
validated, the resulting optimized version will be included 
in a monitoring and forecast operational framework, using 
the real-time data collected by the METEOSAT Primary 
Data User Station (PDUS). The exploitation of Meteosat 
Second Generation - High Rate Information Transmission 
(HRIT) data is finally the challenging aim of a further 
development and extension of the proposed techniques.. 
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Fig. 8. Same comparison as Fig. 7, where radar data (top) have
been averaged to match the satellite pixel resolution, and only the
MICRA estimates within the area covered by the radar beam are
considered (bottom).

basin have been discussed, through the analysis of rain rate
and accumulated rain fields as estimated by MICRA and
NEREMIS. In our first attempt of validation of the MICRA
technique, we found encouraging results concerning the ca-
pability of the algorithm to detect the raining cells.
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From a quantitative point of view, MICRA seems to un-
derestimate rain rate values when compared to ground based
radar measurements. Possible sources of underestimation
might be related to algorithm parameterization, such as the
choice of sub-region size and spacing or the look-back time
lag, whose optimum values have to be investigated in deeper
detail.

A systematic validation of MICRA and NEREMIS with
ground-based measurements is planned, but their intercom-
parison of estimated rain field shows encouraging agree-
ments. Inclusions of data derived from other sensors, like
MODIS and AMSR, are also foreseen.

Once that the algorithms have been tested and validated,
the resulting optimized version will be included in a monitor-
ing and forecast operational framework. The exploitation of
Meteosat Second Generation - High Rate Information Trans-
mission (HRIT) data is finally the challenging aim of a fur-
ther development and extension of the proposed techniques.
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