
Adv. Geosci., 19, 3–9, 2008
www.adv-geosci.net/19/3/2008/
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.

Advances in
Geosciences

ANN-based sub-surface monitoring technique exploiting
electromagnetic features extracted by GPR signals

S. Caorsi and M. Stasolla

Department of Electronics, University of Pavia, Pavia, Italy

Received: 15 May 2008 – Revised: 12 August 2008 – Accepted: 16 September 2008 – Published: 14 November 2008

Abstract. In this work we consider the problem of deter-
mining the dielectric characteristics of sub-surface layers by
means of GPR systems. In particular, a suitable electromag-
netic feature (theR0 parameter), strictly related to the geo-
physical parameters of the scenario, is first extracted from
the GPR e.m. signal and then fed to an artificial neural net-
work (ANN) in order to derive the dielectric permittivity of
the sub-surface layer.

1 Introduction

The ground penetrating radar (GPR) is a probing system de-
signed primarily for the detection of objects and/or inter-
faces below the earth’s surface (Daniels et al., 1988), (Carin,
2001). The simplest architecture consists of two separated
broadband antennas, typically “bow-tie” dipoles: a transmit-
ter (TX) for the generation of microwave short-pulses and a
receiver (RX) which measures the backscatter radiation from
buried targets.

Due to its non-destructive nature and proven diagnostic
effectiveness, GPR-based solutions have been developed in
many application fields, from infrastructure analysis to pave-
ment profiling, from railroad deterioration assessment to en-
vironmental monitoring. In particular, a very challenging
issue is the exploitation of GPR as a remote sensing tool
for detecting buried objects or characterizing the subsurface
structure and properties (Vellidis et al., 1990; Mellet, 1995;
Golovko, 2004; Soldovieri et al., 2007).

In literature, two approaches can be basically found: in-
version techniques mostly based on approximated solutions
of the scattering integral equation (Joachimovicz et al., 1991;
Caorsi et al., 1993; Pierri et al., 2002; Lambot et al., 2004;
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Kao et al., 2007) or “learning by examples” procedures em-
ploying artificial neural networks (Hoole, 1993; Caorsi and
Gamba, 1999; Youn and Chen, 2003; Caorsi and Cevini,
2005a). The former approach, generally more precise and
widely applicable, suffers high computational costs, and ma-
chine learning algorithms are now becoming powerful alter-
natives.

In our past research (Caorsi and Cevini, 2005b), embrac-
ing the ANN approach, the evaluation of layers permittiv-
ity was addressed focusing on the analysis of a numeri-
cal simulation of the electromagnetic field scattered by the
buried layer, obtained as the difference between the whole
signal at the receiver and the field emitted by transmitter in
freespace. Unfortunately, this kind of approach - although
providing good and encouraging results – is too dependent
on the source properties (for example, current/voltage pulse
that feeds the antenna) and, in some cases, needs complex
NN architectures.

In order to reduce as much as possible the a priori informa-
tion about the electromagnetic source and to pursue a strong
generalization, a new approach is introduced which manages
only the amplitude of the received waveforms and exploits
the fixed time scale, forced by scenario and antennas geomet-
rical configuration, to determine the signal time dynamics.

In the next section, the algorithm is shown, first describ-
ing the theoretical bases and then indicating the rationale be-
hind the actual implementation. Detailed results and error
assessments are presented in Sect. 3. Conclusions hint final
remarks and future developments.

2 Methodology

Let us consider the scenario shown in Fig. 1: a GPR system
illuminates a sub-surface homogeneous layer of unknown
relative permittivity (εL) and thickness (xL). Below this
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Fig. 1. Study scenario.

layer, another homogeneous medium ofεB and infinite thick-
ness is placed.

The GPR consists of two antennas (one TX and one RX)
separated byd0, and the whole device is positioned at dis-
tancex0 above the ground.
In general, the signalS(t) sensed at the receiver can be de-
composed into the contribution of the direct link (Sd(t)) and
the one due to the discontinuity effect of the air-ground inter-
face (Sr(t)).

The ratio

R0 =
Sr(t)

Sd(t)
(1)

is a feature strictly related to propagation conditions and to
dielectric characteristics of the layer. Measured nearby the
discontinuity plane and in case of normal incidence, it would
be the theoretical reflection coefficient0; therefore, given a
fixed geometric configuration of the GPR system – i.e.xo

andd0 – we can avoid the dependence on propagation and
oblique incidence effects (as they are constant), so that:

R0 = R0(εL) (2)

If this parameter can be extracted from the overall signal at
RX, it is possible to determineεL by inverting Eq.2.
In the ideal case,Sr(t) andSd(t) are completely separated,
andR0 can be simply computed as:

R0 =
|S(tmaxr )|

|S(tmaxd )|
=

max|Sr(t)|

max|Sd(t)|
(3)

wheretmax corresponds to the maximum of the considered
signal (r or d) and the absolute value has been introduced
to prevent from phase inversions that can happen at the in-
terface. Unfortunately, the typical working conditions (dis-
tances and emitted pulse length) do not allow to keep the
direct and the reflected signals separated: usually the echo
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Fig. 2. Total received e.m. field in case of separate signals.

reaches the receiver when the tail of the direct pulse is still
present. It is straightforward that Eq.3 loses its meaning
and the maxima-seeking is now impracticable. Anyway, the
fixed geometry enables the detection of two further instants
that can be chosen for a new, but consistent, characterization
of R0:

R′
0 =

|S(tfpr )|

|S(tfpd
)|

(4)

wheretfp is the time instant corresponding to the first peak
of the signal we are considering (r or d). This instant can be
easily evaluated within the direct signal: assuming that the
layer is non-dispersive, we expect the echo to show the same
shape and time length of the original waveform. This means
that, also within the reflected signal, the first peak occurs af-
ter the same time shift found for the direct signal. Such hy-
pothesis, although strong in certain cases, is absolutely rea-
sonable for the considered problem and in many GPR appli-
cations, since it is verified for most dielectric materials within
a frequency range up to a few GHz (Pozar, 1990).

The keypoint of the new formulation is thatR′
0 is still uni-

vocally bound toεL, since the tail of the direct signal can
be simply viewed as a constant additive term that does not
depend on the layer’s permittivity:

R′
0 = R′

0(εL) (5)

and consequently it can be used within the inversion process
to retrieve the layer’s permittivity.
Actually, since this procedure is intended to face the most
general cases, without taking into account the pulse shape
and length, from the operational viewpointtfpd is not cho-
sen as the instant when the first signal peak occurs, but as the
instant when the signal reaches its maximum value within
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Fig. 3. Separate signals: error analysis with respect to training set
dimensions.

a time window between the direct pulse’s start point and
the echo’s theoretical arrival (see magenta and green dots in
Figs. 2 and 7).

Therefore, the parameter can be rewritten as:

R′′
0 =

|S(tmwr )|

|S(tmwd
)|

(6)

As can be easily seen, the last formalization in Eq.6 com-
prises all the previous ones: depending on the considered
case,tmw coincides withtmax or tfp.

In fact, in the former case (distinct signals), the theoretical
arrival of the echo would arise after the direct wave complete
attenuation and the “search” window would hold the absolute
signal maximum. In the latter case (overlapping signals), de-
pending on the geometry, the echo would start in any point
comprised between the start and the end of the direct pulse:
if at least one peak (a local maximum) is detectable, then
our algorithm would choose the corresponding time position,
otherwise the ending instant of the ‘search’ window.

It is interesting to notice that, within the whole framework,
the role of the layer’s thicknessxL is marginal. In fact, in the
worst case (thin layer and low permittivity) the first echo
could be covered by the reflected wave generated at layer-
ground discontinuity. Nevertheless, if this overlap does not
alterS(tmwr ), the relationship betweenR′′

0 andεL continues
to be univocal.

Once the parameterR′′
0 has been extracted, a mapping

function for recovering the layer’s permittivity is needed.
The proposed approach does not perform an analytical in-
version process, but exploits the potentialities of an artificial
neural network (Haykin, 1994). More in detail, a Multi-
Layer Perceptron (MLP) has been employed, made up of
three layers (input-hidden-output) of neurons, which are ac-

0 5 10 15 20 25 30
0

1

2

3

4

5

6

Test samples

Re
la

tiv
e 

er
ro

r (
%

)

Fig. 4. Separate signals: error detailed analysis for the 8-sample
training set.

tivated according to a bipolar sigmoid function. Further-
more, MLPs are supervised neural networks and they require
a training phase during which a set of “examples” (input data
and the corresponding expected outputs, the target data) is
employed for the mapping process. In particular, internal
weights and biases, are updated, according to a modified ver-
sion of the Back Propagation (BP) algorithm, by a recursive
minimization of the error between the reconstructed outputs
and the expected values, computed as:

E =
1

T · NL

T∑
t=1

NL∑
i=1

[xe
i (t) − xi(t)]

2 (7)

whereT is the number of training examples,NL the num-
ber of neurons andx andxe are the actual and the expected
values of the output, respectively.

The typical trade-off in supervised approaches resides in
the higher accuracy with respect to the dimensions of the
training set, whose creation is a very time consuming and
sometimes difficult operation. For our actual case, this oner-
ous task of collecting “on field” samples can be avoided by
a numerical simulation of the electromagnetic field. We will
next show that the proposed approach enables reducing this
significant dependency from the training set: having only one
input parameter and one output feature, the ANN architecture
can be very simple, and the number of needed training sam-
ples very small. As can be seen, this also allows an easier
retrieval of experimental training data, the typical bottleneck
of such procedures.
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Fig. 5. Separate signals: mean relative errors with respect to in-
creasing SNRs.
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Fig. 6. Separate signals: Total received e.m. field in case of 10 dB
SNR.

3 Numerical results

In this paragraph the performances of the proposed method
are discussed. In order to carry out a wide assessment
of its potentialities, the study scenario (Fig. 1) is simulated
through a numerical computation based on the Finite Ele-
ment Method (FEM). In fact, this allows us to fully control
the characteristics of the system (antennas, signal, layer), and
thus to vary them for a more detailed analysis.

In particular, for the GPR system, the TX is modeled as a
current line fed with a gaussian-modulated sinusoidal pulse
(center frequency of 500 MHz) of length 3.5 ns, while the
design of the RX is not taken into account, since the re-

Table 1. Separate signals: AWGN.

SNR (dB) 10 20 30 40 50

mean (%) 13.55 4.20 1.67 1.41 1.43
max (%) 44.75 13.12 5.18 5.89 5.85
min (%) 0.74 0.26 0.00 0.06 0.22

Table 2. Separate signals: Fading.

SNR (dB) 10 20 30 40 50

mean (%) 10.59 3.71 1.70 1.38 1.42
max (%) 33.40 14.46 5.30 5.70 5.83
min (%) 0.05 0.10 0.09 0.16 0.16

Table 3. Separate signals: AWGN and fading.

SNR (dB) 10 20 30 40 50

mean (%) 11.70 3.95 2.10 1.39 1.40
max (%) 32.67 14.33 5.61 5.78 5.86
min (%) 0.45 0.20 0.16 0.09 0.20

ceived signal is simply the electromagnetic field calculated at
the position of the receiving antenna (at distanced0=30 cm).
Regarding the medium properties, the discontinuity layer is
characterized byεL values ranging from 2 to 20, with 0.5
step, for a total dataset consisting of 37 samples. As regards
the layer’s thickness, whose effect on theR0 parameter has
been discussed in the previous section, we opted, for the sake
of simplicity, for axL of 90 cm, so that, in none of the cases,
the second echo covers the first one. Actually, for the de-
scribed scenario, it is an excessive value, since even from
xL≥20 cm (in the worst case ofεL=2) the second reflection
starts arriving after the first half of the first echo, without al-
tering the peaks of interest.

From the whole dataset, a part of the “input parame-
ters/output features” (R0/εL) pairs is necessary for the train-
ing of the neural network, while the rest is used for the test
phase (theR0 parameters will be fed to the ANN and the
outputs compared with the actual permittivities).

The first part of the discussion is right intended to show
the performances of the algorithm depending on the num-
ber of training samples. Then, being the simulated signals
in an ideal scenario free of disturbances (except for numeri-
cal fluctuations), the robustness of the method is assessed by
modelling the most common noise sources that affect GPR
systems, such as additive and multiplicative noise. Addi-
tive noise is usually due to electronic devices (we assume
it is a white noise with gaussian probability density function,
AWGN), while the so-calledfadingis the multiplicative noise
that characterizes propagation effects, for instance multiple
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Table 4. Overlapping signals: AWGN.

SNR (dB) 10 20 30 40 50

mean (%) 8.44 2.79 1.29 0.96 0.94
max (%) 26.83 8.05 4.53 4.01 4.19
min (%) 0.05 0.31 0.08 0.02 0.03

Table 5. Overlapping signals: Fading.

SNR (dB) 10 20 30 40 50

mean (%) 7.78 2.64 1.39 0.98 0.94
max (%) 26.75 6.16 4.01 4.19 4.22
min (%) 0.26 0.08 0.06 0.03 0.03

Table 6. Overlapping signals: AWGN and fading.

SNR (dB) 10 20 30 40 50

mean (%) 8.99 3.19 1.41 0.96 0.93
max (%) 23.60 10.62 3.89 4.14 4.16
min (%) 0.34 0.38 0.09 0.01 0.04

reflections. Therefore, the signals’ waveforms are altered
by adding and/or multiplying random-generated sequences
of increasing powers (SNR from 10 to 50 dB), according to:

Sn(t) = (1 + nm) · S(t) + na (8)

As a final remark, the analysis is both carried out for sepa-
rate and overlapping signals, to show the high degree of gen-
eralizability of theR0 parameter. For simulating these two
different cases, it is either possible to tune the geometrical
parameters,d0 andx0, or the pulse duration. Nevertheless,
since the GPR characteristics usually depend on system de-
sign, the only aspect users can manage is the antenna-ground
distance. Consequently, we decided to keep the GPR’s model
unchanged (d0 = 30 cm andpulse length = 3.5 ns) and to
choose two different antenna-ground distances:x0 = 60 cm
(separate) andx0=30 cm (overlapping).

3.1 Separate signals

Fig. 2 depicts the total received signal whenSr(t) andSd(t)

are separated. From the fixed geometry, we can derive:

· Sd(t) start = 1 ns

· Sr(t) start = 4.12 ns

⇒ “search window”∈ [1; 4.12] ns

Therefore, in this configuration, the maximum value reached
within the “search” window is the global maximum ofSd(t),
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Fig. 7. Total received e.m. field in case of overlapping signals.
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Fig. 8. Overlapping signals: error analysis with respect to training
set dimensions.

which corresponds totmwd
=2.04ns. The time shift1t from

the signal start is 1.04 ns and thustmwr is 5.16 ns.
Once theR0 parameter is evaluated, it is associated to the

related permittivity and then fed to the neural network for
the training phase. The graph in Fig. 3 clearly shows that
performance stability is reached with very small training set
dimensions (even with 4 samples mean errors are below 5%).

Of course, the greater the training set, the higher the accu-
racy, but differences are not significant. The best trade-off in
terms of accuracy and needed ground-truth references can be
an 8-sample training set, whose error analysis is presented in
Fig. 4. It can be noticed that the mean relative error is only
1.4%, which is exceeded in very few cases, for a maximum
error of 6%. Moreover, 8 is definitely a small number, so that
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Fig. 9. Overlapping signals: error detailed analysis for the 8-sample
training set.
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increasing SNRs.

it is possible to easily create an experimental dataset of ref-
erences. Otherwise the only solution would be the numerical
simulation of the environment, which is sometimes a difficult
task.

For the robustness analysis, the signal is corrupted with
the additive and multiplicative termsna andnm of Eq.8. A
simple practical device for facing disturbances consists in se-
lecting not only a single amplitude value but performing a
mean over a small neighborhood of that point.

The three curves in Fig. 5 represent the trends of mean er-
ror values for all the possible combinations of noise: only
additive (A), only multiplicative (M), both additive and mul-
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Fig. 11. Overlapping signals: Total received e.m. field in case of
10 dB SNR.

tiplicative (A+M). As can be seen, for low SNRs the contri-
bution of additive noise is more sensible than multiplicative
one; nevertheless, for SNRs higher than 30 dB, the effect is
almost identical. The joint effect of AWGN and fading is
higher than the separate contributions between 25 and 40 dB;
above results are comparable, as noise effect is not still sig-
nificant. By the way, it must be stressed that the error abso-
lute values are certainly promising, since the maximum mean
error is only 12% (in case of a 10 dB SNR, which alters the
original signals so that they are almost undistinguishable, see
Fig. 6) and it rapidly decreases to 4%.

3.2 Overlapping signals

In Fig. 7 is shown the total received signal whenSr(t) and
Sd(t) overlap. From the fixed geometry, it comes that:

· Sd(t) start = 1 ns

· Sr(t) start = 2.24 ns

⇒ “search window”∈ [1; 2.24] ns

The “search” window is of course narrower, but the maxi-
mum signal value that can be resolved is still the global max-
imum. It is not important that the echo is mixed up with
the tail of the first signal, because we infer the position of
its maximum through the a priori knowledge of the system
geometry: the time shift is still 1.04 ns, thustmwr =3.28 ns.

Following the same outline of the previous subsection, the
error trend due to the number of training samples is studied.
Again, with 2 and 3 training inputs, errors are very high, but
as the set increases they rapidly decrease (Fig. 8). With re-
spect to the values found for separate signals, we have lower
errors, even though the presence of the direct pulse’s tail.
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This is simply due to the fact that the distance covered by the
echo is shorter: the power of the received signal is greater and
the amplitude differences due to diverseεL are more sensible.
Anyway, the tendency remains similar, thus also in this case
we decided to focus on the 8-sample training set. As reported
in fig. 9, the mean error value is 0.94%, while the maximum
is 4.65%; in-between there are only 3 reconstructed values
around 3% and 3 values around 1–1.5%.

The robustness analysis (Fig. 10) strengthens the previous
results, since we have the maximum error of 10% with a
SNR of 10 dB, that steeply slopes down for SNRs higher than
20 dB. Nevertheless, differently from the other configuration,
here additive noise’s effect becomes similar to multiplicative
a bit earlier, around 25 dB, whereas the combination of the
two contributions is always greater than the single ones, at
least until the SNR nullifies any interferences.

4 Conclusions

In this paper, a new method for the reconstruction of sub-
surface layers’ permittivity by means of GPR signals has
been presented. The problem is solved by extracting a sim-
ple, but strong electromagnetic parameter which is then as-
sociated to permittivity through a neural network. The aim
of this approach is to reduce as much as possible the a priori
information required for parameter extraction and inversion
processes, as well as to minimize computational and time
costs.

The performance assessment, carried out over a large
amount of scenario conditions (acquisition geometry, layer’s
permittivity, noise), shows very high accuracies and gener-
alization capabilities. Moreover, the simple neural architec-
ture employed for the inversion enables a very fast compu-
tation, which makes the method suitable for real-time ap-
plications. Besides a more detailed analysis about the in-
fluence of layer’s thickness on theR0 parameter, next de-
velopments will address the implementation of two in-series
networks for recovering the thickness itself, as well as the
reconstruction of multi-layered surfaces. Finally, the method
will be tested on pulses within the range of super high fre-
quencies, where materials become dispersive and the use of
non-monochromatic source is critical.
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