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Abstract. A new approach for the nowcasting of precipita-
tion has been developed at the German Weather Service com-
bining extrapolation techniques and Numerical Weather Pre-
diction (NWP) for a lead time range of several hours. Radar-
derived precipitation fields serve as input data for a track-
ing algorithm using model-derived wind data. The compos-
ite precipitation field is derived from the precipitation scans
which are performed every five minutes at the 16 German
radar stations. The data are corrected from clutter and shad-
ing effects. The tracking of this radar-derived precipitation
field is performed using the temporally and spatially resolved
horizontal wind fields at different pressure levels provided by
the Local Model Europe (LME). The optimal wind field is
derived from minimization of the least-squares difference be-
tween a linear combination of model wind data from different
pressure levels and the linear displacement vectors calculated
via pattern recognition from previous radar measurements.
An area-preserving displacement of the precipitation fields
is realized by eliminating the wind field divergence and by
omitting the dynamical evolution of the precipitation fields.
Advection is performed using the fourth-order Bott scheme.
Forecasted data comprise precipitation rates for every five
minutes lead time as well as hourly sums of precipitation.
The verification of a case study’s results against radar precip-
itation measurements lead to a mean Equitable Threat Score
(ETS) of 70%, 46%, and 38% for the first, second, and third
forecast hour, respectively.
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1 Introduction

The accurate prediction of precipitation is still a major task
meteorologists are facing today. Forecasting modules range
from extrapolation techniques to complex numerical weather
prediction (NWP) systems making use of a variety of avail-
able observations. Radar nowcasting modules classically
base on pattern recognition tools that map similar image
structures in successive radar images and thus allow the re-
trieval of displacement vectors for single precipitation struc-
tures. Using the assumption that the movement is static in
a Lagrangian sense, the radar image structures’ tracks can
be extrapolated to the near future.Germann and Zawadzki
(2002) andTurner et al.(2004) implement this method us-
ing variational echo tracking, a semi-Lagrangian advection
scheme, and spatial scale filters to remove structures at lead
times larger than their predictability.Li and Lai (2004)
apply an object-oriented algorithm to distinguish advection
of larger precipitation elements from internal movements of
smaller-scale structures. The advantage of radar extrapola-
tion methods is that they start with optimal skill as well as op-
timal displacement vectors for timet→0. However, extract-
ing information on growth and decay of precipitation struc-
tures is not straightforward. On the other hand, NWP models
start with less skill, mainly determined by data assimilation
quality, however, can better capture large-scale movements
and the growth and decay of precipitation patterns.Lin et al.
(2005) derived a cross-over time between radar extrapolation
tools and mesoscale NWP, e.g., the point of time when the
scores for NWP get better than the ones for the extrapolation
methods, of 6 hours. This cross-over time can be extended
by filtering out small-scale structures with shorter lifetimes
than the respective lead time. On the other hand, ongoing
work on enhancing model resolution along with improving
the representation of microphysical processes and data as-
similation moves the cross-over time to shorter lead times.
Idealistically, the forecasting system combines all available
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methods and observational data within their most suitable
lead time intervals, having in mind the need for fast process-
ing, especially in the nowcasting regime. An approach to
combine extrapolation techniques with NWP was presented
by Golding (1998). He uses model wind fields in several
height levels as well as linear displacement vectors to advect
precipitation structures and selects the method that yields the
optimal correlation. Radar extrapolation methods and NWP
are weighted and merged to produce an optimal forecast.

For the last few years an objective pattern matching fore-
cast procedure using digital satellite and radar data has been
operational at the German Weather Service (DWD) (Bartels
et al., 2005). This module is part of the “Satellite- and Radar
Weather” of DWD. Forecasts are performed for qualitative
radar pattern, quantitative rainfall rates from radar reflectiv-
ity, clouds and significant weather charts (including light-
ning). The crucial nowcasting technique is a special pattern
recognition program, applied to radar and Meteosat Second
Generation satellite data. The results of the forecasts are sat-
isfying up to a lead time of two hours. Nevertheless, there is
a strong dependency on the quality of the radar data. In order
to extend the forecast to larger lead times a new technique
of combining radar-derived displacement vector fields with
NWP wind fields has been developed at DWD.

Here, this new approach for the nowcasting of precipi-
tation combining extrapolation techniques and NWP wind
fields designed for a lead time range of several hours is pre-
sented. The composite precipitation field derived from the
precipitation scans which are performed every five minutes at
the 16 German radar stations serve as input data. The data are
effectively corrected from clutter using a newly-developed
filter method. The tracking of this radar-derived precipitation
field is performed using the temporally and spatially resolved
horizontal wind fields from the Local Model Europe (LME)
(Steppeler et al., 2003; Schulz and Scḧattler, 2005). An area-
preserving displacement of the precipitation fields is realized
by eliminating the wind field divergence and by omitting the
dynamical evolution of the precipitation fields. The best dis-
placement vector field is derived from online comparison of
model wind data from different pressure levels with the linear
displacement vectors calculated via pattern recognition from
previous radar measurements. Here, details of this newly de-
veloped method and results of a case study verified against
radar measurements are presented. Additionally, the results
of the observation-based extrapolation method are shown for
comparison.

2 Data

2.1 Radar-derived precipitation fields

Radar-derived surface precipitation fields, the so-called RZ
product of DWD, serve as input data for the tracking algo-
rithm. At each of the 16 German radar stations precipita-

tion scans, i.e., radar scans with the lowest possible eleva-
tion angle of the radar beam varying between approximately
0.3◦ and 2.0◦ depending on the surrounding topography, are
performed every five minutes. The resulting data are com-
bined to a composite with a pixel side length of 1km cov-
ering nearly the whole area of Germany. The results of a
precipitation scan are regarded as best possible measurement
of and therefore representative for surface precipitation. The
reflectivity data are corrected, e.g., from shading effects due
to obstacles in the line of radar beam propagation and con-
verted to rain rates using an improved Z-R-relationship that
takes into account the characteristic of the precipitation event
(Bartels et al., 2005).

2.2 Model-derived wind fields

The tracking of the radar-derived precipitation field is per-
formed with a displacement vector field based on the fore-
casted wind fields of the Local Model Europe (LME),
i.e., the operational numerical weather prediction (NWP)
high-resolution regional model of DWD. The LME is a
non-hydrostatic, compressible atmospheric model. It has
665×657 grid points in the horizontal with a grid length of
0.0625◦, i.e., appoximately 7 km, and 40 vertical levels using
hybrid coordinates. Wind fields are given on distinct pressure
levels. In the framework presented here, wind vectors on
the pressure levels 500 hPa, 600 hPa, 700 hPa, and 850 hPa
are used. The different pressure levels are weighted in an
Optimal Linear Combination (OLC) described in detail in
Sect.3.2. To use the wind field as input data it has to be in-
terpolated to the radar pixel field. Interpolation is realized by
taking the mean of the values at the four nearest model grid
points weighted with their inverse distance to the respective
radar pixel center. Additionally, a coordinate transformation
of the wind vectors is applied.

2.3 Radar-derived displacement vector field

Additional information for the advection of the precipita-
tion fields is taken from the observation-based extrapolation
module, in the following referred to as OBE, that has been
run operationally at DWD for several years (Bartels et al.,
2005). Precipitation elements are advected using a displace-
ment vector field that is derived from observed data itself.
The crucial nowcasting technique is a special pattern recog-
nition program, applied on clutter-filtered radar data cover-
ing Central Europe with a spatial resolution of one to two
kilometres and a temporal resolution of five to fifteen min-
utes making additional use of Meteosat Second Generation
satellite data. The focus lies on the meso-β scale covering
predominantly stratiform precipitation fields, however exten-
sion to the meso-γ scale is underway to additionally cover
convective shorter-lived structures. The displacement vec-
tor field is derived from the mapping of recognized precip-
itation structures in successive picture data. The resulting
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displacement vectors are interpolated and a weighted mean
of the actual data and the vector fields of the preceeding two
time steps is generated to guarantee a steady displacement
over time. Thus, in every timestep a displacement vector
field is generated that reflects the real track for timest<0
and, thus, is a good approximation for smallt . This vector
field is regarded as the optimal solution at the location of the
precipitation at starting time.

3 Technique

3.1 Clutter filter algorithm

3.1.1 Motivation

Radar measurements are subject to multiple sources of error
that lead to artificial precipitation pixels in the radar prod-
uct. These false echoes are largely eliminated in the opera-
tional process, however, to prevent removal of any true pre-
cipitation structures from the data the applied methods are
conservative leaving some clutter pixels in the radar product.
Due to the inherent numerical diffusion of Eulerian transport
schemes, single high-intensity pixels are smeared out mak-
ing them less recognizable as clutter pixels in the forecast
product. Therefore, an additional filter algorithm has been
developed that effectively eliminates all clutter pixels within
the composite data.

3.1.2 Method

The basic assumption of the presented approach is that clut-
ter pixels appear scattered with varying magnitudes, whereas
precipitation pixels are more clustered within a homoge-
neous precipitation field. Technically, each pixel is scanned
individually and marked as clutter pixel, if a certain threshold
percentage of pixels within a 31×31 surrounding square has
significantly smaller values than the respective central pixel,
i.e., less than 45% of the central pixel’s value. The threshold
percentage taken in this studies is 85%. In areas, in which
clutter pixels are observed regularly, e.g., close to the radar
stations, the value is lowered to 60% to enhance the filtering
effectivity. In a second step, the identified clutter pixels are
either removed in non-rainy areas or, when the clutter pixel
of high intensity is masked by a precipitation field, set to the
mean value of all non-clutter pixels within the surrounding
square.

This method shows good results in effectively eliminat-
ing clutter pixels with negligible effect on precipitation struc-
tures (Bartels et al., 2005).

3.2 Optimal Linear Combination (OLC)

Considering the displacement vectors at the location of the
precipitation elements the best estimate at start time, the best
wind field based on model-derived winds is that with the

smallest difference to the observation-based vector field. To
generate an optimal displacement vector field based on the
model wind data, we use a linear combination of the wind
fields inn different pressure levels:

uij = αp1uij,p1 + ... + αpnuij,pn (1)

vij = βp1vij,p1 + ... + βpnvij,pn (2)

with n=4 and p1=850 hPa, p2=700 hPa, p3=600 hPa,
p4=500 hPa taken in this paper. The coefficients of the Opti-
mal Linear Combination (OLC) are derived via minimization
of the squared differenceS between the observation-based

vector field
[
uobs

ij , vobs
ij

]
and the linear combination of the

model wind fields
[
uij , vij

]
at those pixels[i, j ] at which the

rain rateRRij is non-zero and, thus, the pattern recognition
algorithm provides displacement vectors:

S =

N∑
i,j=1

∧RRij 6=0

[(
uij − uobs

ij

)2
+

(
vij − vobs

ij

)2
]

!
= Min (3)

with N=900 being the number of pixels in each horizontal
direction of the radar composite data field. By setting the
derivatives to zero:

∂S

∂αp1

=
∂S

∂αp2

= ... =
∂S

∂βpn

!
= 0 (4)

one gets two linear equation systems each consisting ofn=4
equations withn=4 unknown coefficientsαp andβp, respec-
tively:

900∑
i,j=1

∧RRij 6=0

[
uij,p1

4∑
k=1

αpk
uij,pk

]
=

900∑
i,j=1
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... (5)
900∑
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[
vij,p4

4∑
k=1

βpk
vij,pk

]
=

900∑
i,j=1

∧RRij 6=0

vobs
ij vij,p4

that is solved using a Gauss algorithm. The retrieval of a new
displacement vector field is performed once an hour.

3.3 Elimination of divergence

In its present form, the module is an exclusive tracking mech-
anism that neglects the growth or decay of precipitation el-
ements. Thus, it is desirable to perform an area-preserving
displacement to inhibit the creation of artificial structures.
For this purpose, divergences in the horizontal wind field
are eliminated via minimization of the function (Sherman,
1978):

E(u, v, λ) =

∫
A

[
α2

(
u − u0

)2
+ α2

(
v − v0

)2

+ λ

(
∂u

∂x
+

∂v

∂y

) ]
dxdy, (6)
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3.4 Advection

The advection of the radar-derived precipitation fields is per-
formed using the fourth-order monotone advection scheme
of Bott (1993). The scheme has been proven to produce neg-
ligible numerical diffusion, while performing satisfactorily
fast. The timestep is determined by the maximum wind speed
within the lead time frame and the grid spacing, complying
with the Courant-Friedrich-Levy condition. Additionally, the
background mask that marks the area in which radar data is
available within the 900×900-pixel area is advected using a
fifth order upwind scheme.

4 Case Study

A case study has been performed for 29 April 2006. The
weather situation on that day was characterized by an upper-
level cut-off low over the northern part of Germany. At
ground level cold marine air was advected from the north. In
the area of the upper-level cold air mass convective precip-
itation associated with rain, partly graupel and snow down
to 500 m was initiated, while in the south-east and north-east
stratiform rain dominated triggered by advection of warm air
and vorticity.

Figure 1 shows the rain rate at 19:15 based on the 5-minute
radar measurement, the so-called RZ product, with clutter fil-
tering applied. This data serves as input data for the track-
ing module. Additionally, the black arrows mark the wind
field derived with the OLC method and the blue arrows show
the displacement vector field derived from the observations,
both valid at 19:15. Although the OLC technique is based on
the observation-derived vector field within the precipitation
areas both vector fields show significant differences. Large
differences can be found outside of the precipitation areas
and may become significant for larger lead times.

A stratiform precipitation field with maximum values up
to approximately 20 mm/h is located in the north-eastern part
of Germany moving to the north-west in a counter-clockwise
turn. Over the western and mid part of Germany numerous
small precipitation areas caused by convective cells are ad-
vected to the south-east following the equivalent counter-
clockwise streamlines opposite of the stratiform elements
with respect to the turning center.

Figure 2, left panel, shows the hourly sum of precipita-
tion, the so-called RH-product, between 20:15 and 21:15
UTC based on 5-minute radar measurements with clutter fil-
tering applied. While the stratiform system has moved, some
convective elements with their shorter lifetimes have already
disappeared. The corresponding results of the tracking al-
gorithms, the so-called RS-products, are shown in the mid-
dle (OLC) and right (OBE) panel of Fig. 2. The presented
hourly sum valid between 20:15 and 21:15 is based on the
120-minute forecast starting at 19:15. The turning movement
is very well captured by both algorithms for the stratiform as
well as for the convective elements, however, the precipita-
tion caused by the convective cells is overestimated. This

Fig. 1. Rain rate at 19:15 UTC based on the 5-minute radar mea-
surement (RZ) with clutter filtering applied; black arrows show the
wind field based on the OLC method, blue arrows show the dis-
placement vector field derived from the observations.

is due to the fact that no dissipation can be represented in
the actual development stage of the modules. The results of
the two modules concerning the direction and velocity of the
precipitation fields’ movement is similar. The result of the
OLC method (Fig. 2, middle panel) shows smaller areas of
precipitation, especially valid for those with low intensity.
This is due to, first, the more intense clutter filter and, sec-
ond, the smaller time step used for the advection leading to
larger smoothing along the forecasted tracks. This effect can
also be seen in the categorical scores.

4.1 Scores

Verification of the forecast is performed using categorical
scores based on a pixelwise yes-no comparison between the

Table 1. Contingency table for the categorical scores (‘Yes’:
RRij ≥ 0.01 mm/h; ‘No’: RRij < 0.01mm/h).

Measured
No Yes Sum

No a b e
Forecasted Yes c d f

Sum g h N

Fig. 1. Rain rate at 19:15 UTC based on the 5-min radar measure-
ment (RZ) with clutter filtering applied; black arrows show the wind
field based on the OLC method, blue arrows show the displacement
vector field derived from the observations.

whereα is the Gauss precision modulus,λ is the Langrangian
multiplyer,u0 andv0 are the initial wind components, andu
andv are the resulting wind components of the divergence-
free wind field. The minimization problem (Eq.6) is solved
iteratively using a Gauss-Seidel algorithm with Successive
Over Relaxation and Chebyshev acceleration (Press et al.,
1992). In case studies, the elimination of divergence lead
to differences in the mean wind speed between the resulting
wind fields and the original data of approximately 10%, thus
the main advective characteristics of the wind fields are re-
tained.

3.4 Advection

The advection of the radar-derived precipitation fields is per-
formed using the fourth-order monotone advection scheme
of Bott (1993). The scheme has been proven to produce neg-
ligible numerical diffusion, while performing satisfactorily
fast. The timestep is determined by the maximum wind speed
within the lead time frame and the grid spacing, complying
with the Courant-Friedrich-Levy condition. Additionally, the
background mask that marks the area in which radar data is
available within the 900×900-pixel area is advected using a
fifth-order upwind scheme.

4 Case Study

A case study has been performed for 29 April 2006. The
weather situation on that day was characterized by an upper-
level cut-off low over the northern part of Germany. At
ground level cold marine air was advected from the north. In
the area of the upper-level cold air mass convective precip-
itation associated with rain, partly graupel and snow down
to 500 m was initiated, while in the south-east and north-east
stratiform rain dominated triggered by advection of warm air
and vorticity.

Figure1 shows the rain rate at 19:15 based on the 5-min
radar measurement, the so-called RZ product, with clutter
filtering applied. This data serves as input data for the track-
ing module. Additionally, the black arrows mark the wind
field derived with the OLC method and the blue arrows show
the displacement vector field derived from the observations,
both valid at 19:15. Although the OLC technique is based on
the observation-derived vector field within the precipitation
areas both vector fields show significant differences. Large
differences can be found outside of the precipitation areas
and may become significant for larger lead times.

A stratiform precipitation field with maximum values up
to approximately 20 mm/h is located in the north-eastern part
of Germany moving to the north-west in a counter-clockwise
turn. Over the western and mid part of Germany numerous
small precipitation areas caused by convective cells are ad-
vected to the south-east following the equivalent counter-
clockwise streamlines opposite of the stratiform elements
with respect to the turning center.

Figure2, left panel, shows the hourly sum of precipitation,
the so-called RH-product, between 20:15 and 21:15 UTC
based on 5-minute radar measurements with clutter filter-
ing applied. While the stratiform system has moved, some
convective elements with their shorter lifetimes have already
disappeared. The corresponding results of the tracking al-
gorithms, the so-called RS-products, are shown in the mid-
dle (OLC) and right (OBE) panel of Fig.2. The presented
hourly sum valid between 20:15 and 21:15 is based on the
120-min forecast starting at 19:15. The turning movement
is very well captured by both algorithms for the stratiform
as well as for the convective elements, however, the precip-
itation caused by the convective cells is overestimated. This
is due to the fact that no dissipation can be represented in
the actual development stage of the modules. The results of
the two modules concerning the direction and velocity of the
precipitation fields’ movement is similar. The result of the
OLC method (Fig.2, middle panel) shows smaller areas of
precipitation, especially valid for those with low intensity.
This is due to, first, the more intense clutter filter and, sec-
ond, the smaller time step used for the advection leading to
larger smoothing along the forecasted tracks. This effect can
also be seen in the categorical scores.
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Fig. 2. Left: Hourly sum of precipitation (RH) between 20:15 and 21:15 UTC based on 5-minute radar measurements with clutter filtering
applied; Middle: Hourly forecasted sum of precipitation (RS) between 20:15 and 21:15 UTC based on the tracking of RZ measured at 19:15
(Fig. 1) performed with the Optimal Linear Combination (OLC) technique; Right: Same as middle panel but performed with observation-
based extrapolation (OBE)

forecasted and the radar-derived hourly sums RS and RH, re-
spectively. The definition of a to h and N are given in Table
1. The scores used in the following are the Probability of
Detection:

POD =
d

h
, (7)

i. e., the fraction of correctly forecasted rain pixels to all rain
pixels with values between 0 (worst) and 100 % (best), the
False Alarm Ratio:

FAR =
c

f
, (8)

i. e., the fraction of falsely forecasted rain pixels to all fore-
casted rain pixels with values between 0 (best) and 100 %
(worst), and the Equitable Threat Score:

ETS =
d−Dr

c + h−Dr
with Dr =

fh

N
(9)

with Dr being the randomly correct forecasted wet points.
Values of the ETS range between −1/3 (worst) and 100 %
(best) with 0 being the value of the random forecast.

4.2 Results

Forecasts have been performed starting every 30 minutes be-
tween 18:15 and 19:15 UTC and have generated three hourly
sums of precipitation each, one valid for a lead time of 0
to 60 minutes (vv=60 min), one between 60 and 120 min-
utes (vv=120 min), and one between 120 and 180 minutes
(vv=180 min). The OBE method is limited to a two-hours
forecast.

A qualitative assessment of the forecast has already been
given in the introduction to this chapter. A more quantita-
tive evaluation of the forecast is expressed by the categorical

scores introduced in Sect. 4.1. Table 2 gives the POD, FAR,
and ETS for the three forecast time ranges for 3 model sim-
ulations performed with the OLC technique presented in this

Table 2. Categorical scores for different start and lead times for
the two nowcasting techniques (OLC=Optimal Linear Combina-
tion, OBE=observation-based extrapolation), the 180-minutes fore-
cast is only available for OLC, the bold numbers correspond to the
presented figure.

Module Start time Lead time POD FAR ETS
UTC [min] [%] [%] [%]

OLC 18:15 60 83.3 16.4 71.3
OBE 18:15 60 87.5 21.4 70.3
OLC 18:15 120 72.4 45.3 45.2
OBE 18:15 120 79.6 46.5 46.4
OLC 18:15 180 72.0 54.8 36.9
OLC 18:45 60 82.9 20.1 68.1
OBE 18:45 60 88.2 24.3 68.9
OLC 18:45 120 72.6 44.9 44.1
OBE 18:45 120 80.4 48.3 45.4
OLC 18:45 180 69.0 55.7 36.9
OLC 19:15 60 83.8 18.6 69.6
OBE 19:15 60 89.7 25.8 67.8
OLC 19:15 120 73.7 40.6 49.3
OBE 19:15 120 81.0 47.0 46.1
OLC 19:15 180 65.9 52.2 39.8
OLC Mean 60 83.3 18.4 69.7
OBE Mean 60 88.5 23.8 69.0
OLC Mean 120 72.9 43.6 46.2
OBE Mean 120 80.3 47.3 46.0
OLC Mean 180 69.0 54.2 37.9

Fig. 2. Left: Hourly sum of precipitation (RH) between 20:15 and 21:15 UTC based on 5-min radar measurements with clutter filtering
applied; Middle: Hourly forecasted sum of precipitation (RS) between 20:15 and 21:15 UTC based on the tracking of RZ measured at 19:15
(Fig. 1) performed with the Optimal Linear Combination (OLC) technique; Right: Same as middle panel but performed with observation-
based extrapolation (OBE)

4.1 Scores

Verification of the forecast is performed using categorical
scores based on a pixelwise yes-no comparison between the
forecasted and the radar-derived hourly sums RS and RH,
respectively. The definition ofa to h andN are given in Ta-
ble1. The scores used in the following are the Probability of
Detection:

POD=
d

h
, (7)

i.e., the fraction of correctly forecasted rain pixels to all rain
pixels with values between 0 (worst) and 100% (best), the
False Alarm Ratio:

FAR =
c

f
, (8)

i.e., the fraction of falsely forecasted rain pixels to all fore-
casted rain pixels with values between 0 (best) and 100%
(worst), and the Equitable Threat Score:

ETS=
d − Dr

c + h − Dr

with Dr =
f h

N
(9)

with Dr being the randomly correct forecasted wet points.
Values of the ETS range between−1/3 (worst) and 100%
(best) with 0 being the value of the random forecast.

4.2 Results

Forecasts have been performed starting every 30 min be-
tween 18:15 and 19:15 UTC and have generated three
hourly sums of precipitation each, one valid for a lead
time of 0 to 60 min (vv=60 min), one between 60 and

Table 1. Contingency table for the categorical scores (“Yes”:
RRij≥0.01 mm/h; “No”: RRij<0.01 mm/h).

Measured
No Yes Sum

No a b e

Forecasted Yes c d f

Sum g h N

120 min (vv=120 min), and one between 120 and 180 min
(vv=180 min). The OBE method is limited to a two-hours
forecast.

A qualitative assessment of the forecast has already been
given in the introduction to this chapter. A more quantita-
tive evaluation of the forecast is expressed by the categorical
scores introduced in Sect.4.1. Table2 gives the POD, FAR,
and ETS for the three forecast time ranges for 3 model sim-
ulations performed with the OLC technique presented in this
paper and, for comparison, the results of the OBE method.
The model results corresponding to Fig.2 are highlighted.
The absolut values of the scores do not show significant vari-
ations between the different model start times. While the
POD shows high values for all forecast hours, the FAR in-
creases significantly between the first and the second fore-
cast hour dominating the decrease of the ETS. The advec-
tion of the stratiform elements is well captured by the algo-
rithms expressed by the high POD values, even for the 180-
min forecast. On the other hand, the location error in the
forecast of convective elements as well as the lack of dynam-
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Table 2. Categorical scores for different start and lead times for
the two nowcasting techniques (OLC = Optimal Linear Combina-
tion, OBE = observation-based extrapolation), the 180-min forecast
is only available for OLC, the bold numbers correspond to the pre-
sented figure.

Module Start time Lead time POD FAR ETS
UTC [min] [%] [%] [%]

OLC 18:15 60 83.3 16.4 71.3
OBE 18:15 60 87.5 21.4 70.3
OLC 18:15 120 72.4 45.3 45.2
OBE 18:15 120 79.6 46.5 46.4
OLC 18:15 180 72.0 54.8 36.9
OLC 18:45 60 82.9 20.1 68.1
OBE 18:45 60 88.2 24.3 68.9
OLC 18:45 120 72.6 44.9 44.1
OBE 18:45 120 80.4 48.3 45.4
OLC 18:45 180 69.0 55.7 36.9
OLC 19:15 60 83.8 18.6 69.6
OBE 19:15 60 89.7 25.8 67.8
OLC 19:15 120 73.7 40.6 49.3
OBE 19:15 120 81.0 47.0 46.1
OLC 19:15 180 65.9 52.2 39.8
OLC Mean 60 83.3 18.4 69.7
OBE Mean 60 88.5 23.8 69.0
OLC Mean 120 72.9 43.6 46.2
OBE Mean 120 80.3 47.3 46.0
OLC Mean 180 69.0 54.2 37.9

ical evolution like, in this case, the dissipation of convective
elements are associated with high FAR values in this pixel-
wise approach, especially pronounced in the two- and three-
hour forecast. The values for the OBE technique show higher
values for both the POD as well as the FAR resulting in an
ETS with negligible differences to the OLC method comply-
ing with the differences in precipitation areas discussed in
the introduction to Sect.4.

5 Conclusions

A new module for the tracking of radar-derived precipita-
tion fields has been developed and experimentally applied at
DWD. The radar data used as input data are based on the
Germany composite consisting of the precipitation scans of
the 16 German radar stations. The data are converted to
rain rates using an improved Z-R relationship. Clutter pix-
els are effectively removed using a new filter, while precip-
itation structures remain largely unchanged. The displace-
ment vector field used for the advection is based on a lin-
ear combination of the horizontal wind fields at different
pressure levels of the Local Model Europe, i.e., the opera-
tional NWP model of DWD. The coefficient for the optimal
linear combination (OLC) are derived via the minimization

of the squared differences to the displacement vector field
of the observation-based extrapolation module (OBE) that
has been operational at DWD for several years. The latter
field is extracted from successive radar images via a pat-
tern recognition algorithm. Advection is performed using a
fifth-order upwind scheme for the background and the fourth-
order monotone Bott scheme for the precipitation fields.

The presented case study reveals the potential of the mod-
ule to realistically track stratiform and convective precipita-
tion fields. The dynamical evolution of precipitation, how-
ever, cannot be reproduced by the module in its present stage
of development. Standard categorical scores are calculated
to quantify the predictive quality of the module and to al-
low an online comparison to other nowcasting systems like
the observation-based displacement module that is currently
operationally in use at DWD. No significant differences be-
tween the two forecast methods can be found for the pre-
sented case study reflected in similar ETS values. Due to
different time steps and filter algorithms the OBE technique
tends to forecast larger precipitation areas than the OLC
method resulting in higher POD as well as FAR.

A long-term comparison study between the two meth-
ods has been initiated and will be continued operationally at
DWD. Besides average forecast quality, performance and re-
liability are important criteria for the evaluation of the now-
casting module. Using radar data for the extraction of dis-
placement vectors, the forecast method depends on the qual-
ity of the radar data. On the other hand, the OBE technique
performs much faster and is well suited for operational now-
casting. Therefore, the overall aim will be to draw the bene-
fits from both methods to improve the quality and reliability
of precipitation nowcasting at DWD.
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