
Advances in Geosciences (2003) 1: 73–80
c© European Geosciences Union 2003 Advances in

Geosciences

CHAMP gravity field recovery using the energy balance approach

Ch. Gerlach1, N. Sneeuw2, P. Visser3, and D. Švehla1
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Abstract. Since the early days of satellite geodesy energy
balance based methods for gravity field determination have
been considered. If non-conservative forces are known the
Hamiltonian along the orbit is a constant of the motion. Thus
the gravity field can be determined if position and velocity
of the satellite are known and accelerometer measurements
are available to model the non-conservative part. CHAMP
is the first satellite that provides the user with those three
kinds of data nearly continuously. Numerical investigations
using real CHAMP data are presented to show the feasibility
of the method. Using a semi-analytical approach the gravity
field can be determined efficiently by a 2D-Fourier method.
Those fast computations also give way to application of the
method not only to a full gravity field recovery but also, e.g.
for quick-look and validation of SST observations for satel-
lite missions like CHAMP, GRACE or GOCE. The method
can also be used for estimation of accelerometer calibration
parameters.
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1 Introduction

In 1836 the mathematician C. G. J. Jacobi presented an in-
tegral of motion for the restricted three-body problem (see
Jacobi, 1836). There a body of negligible mass (like a comet
or a satellite) moves within the gravity field of a pair of point
masses, which are rotating on circular orbits around their
common center of mass (like the sun and a planet). This
so called Jacobi integral was widely used in astronomy. One
of the application was, e.g. to identify comets independent
of their orbital elements, which can be strongly affected by
planetary disturbances – an idea proposed by Tisserand (see
e.g. Guthmann, 2000).

As stated by Hotine and Morrison (1969), a pair of rotat-
ing point masses is a special case of a rotating rigid body.
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Therefore Jacobi’s integral can be generalized to the case of
an earth orbiting satellite. Then it reads

W(x) −
1

2
ẋ2

= C, (1)

whereW is the gravity potential of the earth (sum of grav-
itational and centrifugal potential),x and ẋ are position and
velocity of the satellite andC is the so called Jacobi-constant.
The second term on the left hand side is equal to the satellite’s
kinetic energy. Equation (1) holds in an earth fixed reference
frame (CTS, conventional terrestrial system). It can also be
derived from the satellite’s equations of motion, as shown
e.g. by Schneider (1967).

The geodetic application of Jacobi’s integral was – as far
as we know – for the first time proposed by O’Keefe (1957).
He suggested to use the balance between gravity potential
and kinetic energy to determine the gravitational potential of
the earth by measuring the velocity of a satellite. More pre-
cisely speaking, potential differences can be derived because
in Eq. (1)C is unknown. But as only the zero-degree coeffi-
cient of a spherical harmonic expansion of the gravity field is
affected, this shall be of no relevance for our further discus-
sion. However for geodetic application Jacobi’s integral, as
given in Eq. (1), suffers from disregarding perturbations like
tides or air resistance.

Jacobi’s integral is formally equivalent to the law of en-
ergy conservation. Potential and kinetic energy of a satel-
lite are equal to the first and second term on the left side of
Eq. (1) and the constantC corresponds to the Hamiltonian
(total energy) of the mechanical system. In the late sixties
Bjerhammar (1967) proposed – without derivation – such a
formulation, based on energy considerations, to determine
earth’s gravitation. There he already included effects of sun
and moon as well as corrections for air drag and solar ra-
diation pressure. The latter are non-conservative forces and
must be included in order to compensate for the loss of en-
ergy due to friction.

As theoretical basis to Bjerhammar’s idea Hotine and Mor-
rison (1969) investigated the integrals of motion of a satellite
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and generalized the formulas for the case of time dependent
potential fields and non-conservative forces. They derived
the energy integral both in an earth fixed as well as in a space
fixed frame (CIS, conventional inertial system). The former
is equal to Eq. (1), while the latter reads

1

2
ẋ2

+ W − �L = C. (2)

There� is the vector of earth’s rotation andL is the satellite’s
angular momentumL = x × ẋ.

Equations (1) and (2) both imply that position and velocity
of the satellite are measured continuously. Today this can be
done, e.g. by high-low tracking from GPS satellites. Wolff
(1969) proposed to apply the energy considerations to a pair
of low orbiting satellites, making use of low-low satellite-to-
satellite tracking (SST). The potential differences between
the locations of the two satellites can be determined from the
measured range rate between them.

Detailed numerical investigations on the feasibility of
gravity field determination based on Jacobi’s integral were
performed by Reigber (1969), using simulated data. Due to
the technique and quality of orbit determination at that time,
the results were pessimistic and the method has not been used
operationally until today. Still there have been theoretical
and numerical simulation studies, e.g. by Ilk (1983), Jekeli
(1999), Ilk (2000), Gerlach and Sneeuw (2000) or Visser et
al. (2003).

Recently the feasibility of the method was tested using
real data by Gerlach et al. (2003) and Howe and Tschern-
ing (2003). Both groups made use of the rapid science orbits
(RSO), provided by GeoForschungsZentrum (GFZ), Pots-
dam, for the CHAMP-satellite. The RSO is produced mainly
for use in GPS radio occultation measurements, where the
accuracy requirements are not that demanding. In contrast,
as shown by Visser et al. (2003), the energy balance approach
is highly sensitive to velocity errors. It is the aim of this pa-
per, to increase the accuracy of the solution shown in Gerlach
et al. (2003) by using a precisely determined orbit, which is
more accurate than the RSO.

2 Energy balance approach

Jacobi’s integral, as given in Eq. (1), is only valid in the ab-
sence of non-conservative forces and for an earth with con-
stant gravity field (no temporal changes in gravitation and
earth rotation). In reality additional terms must be taken into
account to correct for solar radiation pressure, air drag, tides,
etc. The applied corrections are based on energy consider-
ations rather than on a rigorous derivation of a generalized
Jacobi integral. That’s why we call the method energy bal-
ance approach instead of using the term Jacobi integral.

The loss of energy1C due to non-conservative forces, like
air drag or solar radiation pressure, is equal to the work done
by this forces along the satellite’s trajectory and can be com-

puted by integrating the corresponding accelerationsa along
the orbit according to

1C =

∫
x

a dx. (3)

In practice the gravity potentialW in Eq. (1) is not only
induced by the earth. It also contains contributions of all
third bodies like sun, moon or planets (direct tidal potential)
as well as indirect tidal effects (solid earth tides, ocean tides,
etc.) and further temporal variations of the gravitational field
of the earth. Also the centrifugal potential is not constant
due to changes in earth rotation. For short observation pe-
riods (like one or two weeks) we assume, that there are no
temporal variations in the Earth’s gravity field, so we can ne-
glect those effects and only include tides. The direct tidal
potential induced by the bodyi is given by (see e.g. Torge,
1980)

Vi = GMi

(
1

l
−

1

ri
−
rs cosψ

r2
i

)
, (4)

wherers andri are the geocentric radii of satellite and body
i, respectively,l andψ are distance and geocentric angle be-
tween the two andMi is the mass ofi. For the time span
used in this paper (see Sect. 3) the direct luni-solar tides con-
tribute to the potential at CHAMP altitude with up to around
6 m2 s−2. The indirect effects of solid earth and ocean tides
are modelled according to the IERS conventions (McCarthy,
1996). They amount to up to around 1 m2 s−2 for the solid
earth tides and around 0.3 m2 s−2 for the ocean tides. All
other effects (pole tides, direct tidal potential of planets, etc.)
are at least one order of magnitude smaller and are therefore
neglected in the sequel.

Adding the loss of energy1C to the left hand side of
Eq. (1) and splitting the potentialW into tidal potentialVt
(sum of direct and indirect tidal effects), centrifugal and
gravitational potential of the earth we get for the disturbing
potentialT of the earth

T + C =
1

2
ẋ2

−
1

2
(� × x)2 − 1C − Vt − U, (5)

where the second term on the right hand side is the centrifu-
gal potential andU is the normal potential. This is the basic
equation we use for determination of the earth’s gravitational
field. It allows to derive point values of disturbing potential
along the orbit. In the following analysis these potential val-
ues are used as pseudo-observations based on the measure-
mentsx, ẋ anda. As already mentioned the energy constant
C is unknown. But because the disturbing potential fluctu-
ates around zero we have simply introduced as approximate
value forC the mean of the time series on the right hand side
of Eq. 5.

3 Input data

To derive the disturbing potential according to Eq. (5) orbit
and accelerometer (ACC) data of GFZ’s CHAMP satellite
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are used. CHAMP, launched in July 2000, is the first satel-
lite mission that allows to apply the energy balance approach,
because there is continuous high quality tracking of the satel-
lite with GPS and the non-conservative forces are measured
by accelerometry onboard CHAMP. Furthermore, using a re-
duced dynamic technique for orbit determination, the out-
come of the computations are not only positions but also ve-
locities. In fact these velocities give rise to further concern
because they are highly correlated to the a priori gravity field,
used in the orbit determination. This will be discussed later.

3.1 Orbit data

In this paper we have used an 11-days (20 to 30 May
2001) reduced-dynamic orbit (denoted TUM), determined
by Švehla and Rothacher (2003) in the framework of the
CHAMP Orbit Comparison Campaign. Within this 11 days
CHAMP covers the earth quite homogenously, leading to a
good sampling of the gravity field. Orbit data are given in
CTS and provided in 30 s sampling over arcs of 24 h. As
a priori model for orbit computation the EIGEN-1S gravity
field model (Reigber, 2001a) was used.

3.1.1 Precise orbit determination

The dynamic orbit was computed in a double-difference ap-
proach using carrier-phase GPS measurements only. One of
the advantages of using double-differences is, that we get rid
of all epoch-wise GPS and LEO clock parameters. The draw-
back is, that measurements from the IGS ground network
have to be included. The main advantage of the double-
difference approach is, however, that ambiguity resolution
can be done.

As mathematical model for dynamic precise orbit deter-
mination (POD) a normal least-squares adjustment was used
with variational equations without making use of any filter-
ing. The basic idea of this dynamic POD can be summarized
in the following two-step procedure:

1. using a first set of kinematic positions (e.g. from code
observations) as pseudo-observations all dynamic pa-
rameters are solved for and an a priori dynamic orbit
is computed. The partial derivatives of the satellite po-
sition with respect to all orbit parameters are computed
in this step by a simultaneous integration of the equation
of motion and the variational equations;

2. using the carrier-phase measurements the a priori or-
bit is improved by estimating all orbital parameters and
pseudo-stochastic pulses. More frequent setting up of
stochastic pulses may be considered equivalent to mod-
elling the air-drag with more parameters. That’s why
this approach is called reduced-dynamic POD. Air-drag
densities are modelled using MSISE-90 (Hedin, 1991).

The accuracy of the dynamic positions, as compared to
satellite laser ranging (SLR), is at the level of around 4 cm
(RMS). The SLR residuals for the TUM-orbit are shown
in Fig. 1. They were computed as the difference between
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Fig. 1. SLR residuals for double-difference dynamic orbit over 11
days (RMS = 44.3 mm).
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Fig. 2. Comparison of CHAMP dynamic velocities from CSR and
TUM, day 148/2001.

the SLR measurements (corrected for the tropospheric delay
with the Marini-Murray model) minus the distance between
the SLR station and the GPS-derived orbit position. Alto-
gether 2007 SLR residuals were obtained in this way using
69 daily station files from 17 SLR stations over 11 days.

In order to validate the velocities of the TUM-orbit, com-
parison between several POD centers was done, namely the
Center for Space Research (CSR), Austin Texas and GFZ.
Figure 2 shows the comparison with CSR dynamic velocities
for May 28th, 2001 (day 148 of the year). It is worthwhile
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Fig. 3. Residual disturbing potential derived from energy integral
with respect to geopotential model EIGEN-1S.T is compensated
for 1C, while Tuncomp. is not.

noticing that CSR used TEG4 as a gravity model, while for
the TUM-orbit EIGEN-1S was used. Comparison with dy-
namic velocities from GFZ’s Precise Science Orbit, for the
same day, shows RMS of 0.08 mm/s and 0.06 mm/s for along
and cross-track and 0.08 mm/s for radial velocity component,
respectively.

For more details about kinematic and dynamic POD we
refer toŠvehla and Rothacher (2002, 2003).

3.2 Accelerometer data

The accelerometer (ACC) data, as provided by GFZ, are
given in a 10 seconds interval in a frame fixed to the space-
craft’s body (SBF) together with attitude information. The
attitude, which is given as quaternions, allows transformation
between SBF and CIS. To integrate the accelerations along
the orbit according to Eq. (3) either the orbit must be trans-
formed to CIS, or the accelerations to CTS. Due to different
sampling of ACC-data and TUM-orbit positions the latter are
interpolated to a 10 s sampling.

It is known (see Reigber, 2001b), that due to a failure in
one electrode of the accelerometer the measurements of the
radial ACC-component are of bad quality. Recently an al-
gorithm was found to overcome this problem, so the radial
component of the ACC data can be reprocessed. Still this
was not done for the data used in this paper and so the ra-
dial measurements are neglected at all. This seems to be ac-
ceptable, because the main part in1C comes from the ACC
along-track component. From Eq. (3) it is obvious that forces
acting orthogonal to the orbit do not contribute to1C at all
and so accelerations in radial and cross-track direction can
only enter by the order of misalignment of the SBF frame
(measurement frame) with respect to the orbit frame. The
deviation between both is below 2◦.

Also the cross- and along-track components need to be
calibrated due to unknown biases and scaling factors. The
energy balance approach is highly sensitive to biased ACC-
data, which makes it a powerful tool to estimate those biases.
This holds especially for the along-track component (see next
section). For the cross-track component the bias was not es-

timated due to the low correlation between this component
and1C. Instead the time series of the cross-track compo-
nent is reduced for it’s mean value, which seems reasonable
considering the satellites attitude. In all computations a scal-
ing factor of 0.8 was used.

4 Accelerometer calibration

The ACC-data are expected to be very precise only within a
certain measurement bandwidth. For lower frequencies out-
side this band larger errors can occur, which means that the
accelerometer is biased by a long wavelength function or, at
least, by a constant value. Due to the integration performed
in Eq. (3) such a bias would appear as a drift in the poten-
tial. This way the energy balance approach allows the detec-
tion and estimation of accelerometer calibration parameters,
which holds especially for the along-track bias, because, as
already mentioned, it is the essential component in the non-
conservative quantity1C.

There are in principle two ways to determine the drift in
the potential. One is to compare the observed potential to
values derived from an independent potential model. The
residuals consist of the bias, the propagation of further mea-
surement and modelling errors as well as of imperfections of
the reference model. The residuals of the disturbing poten-
tial derived from one day of CHAMP data with respect to the
global model EIGEN-1S are shown in Fig. 3. ThereTuncomp.
andT represent the potential before and after compensation
for 1C, respectively. From the decline ofTuncomp. a loss
of energy of around 160 m2 s−2 can be observed, which cor-
responds to a descent rate for CHAMP of around 25 m per
day. Including1C, we find a decline of around 2400 m2 s−2

per day, which can be explained by a bias in the along-track
ACC-data. For an orbit radius of 6 800 km CHAMP covers a
distance of around 660 000 km within his 15 revolutions per
day. Using this distance in Eq. (3), from the given decline the
bias can be estimated to be in the order of 3.6 · 10−6m s−2.

Another way of detecting the bias is to compare poten-
tial values at cross over points of the orbit tracks. Disre-
garding temporal variations in the gravity field, the potential
values along the orbit must be identical at those points. Po-
tential differences will show up, if the potential is drifting in
time. Of course this works only if there is a crossing in three-
dimensional space or, as we have done here, if the potential is
radially continued to a constant orbit height before. Within
the used period CHAMP’s altitude varies between 400 and
460 km. For such a height variation the disturbing potential
can be expanded in a Taylor series (restricted to quadratic or-
der) with sufficient accuracy. Then the disturbing potential
T0 at constant (mean) height reads

T0 = T −

(
∂T0

∂r
1h +

1

2

∂2T0

∂r2
1h2

)
, (6)

where1h is the altitude difference between actual and mean
orbit height. The series is expanded at mean heighth0 be-
cause then the radial derivatives in Eq. (6) can be taken from
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Fig. 4. Drift of disturbing potential at cross over points (dots) and a
best fitting 9th order polynomial.
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Fig. 6. Residual disturbing potential with respect to EIGEN-1S,
considering a constant bias in ACC only, or taking a time dependent
bias into account.

an a priori potential model and efficiently be computed in a
global grid by spherical harmonic synthesis.

Once the drift is determined at the crossovers, the bias can
be estimated. In Fig. 4 we have plotted the drift of the dis-
turbing potential at the cross over points. There the drift is
assigned to the mean epoch between the two corresponding
tracks. The drift is at the level of around−2410 m2 s−2 with
variations of±20 m2 s−2. This means, that also the along-
track bias is not constant in time, but shows long wavelength
disturbances. We have fitted a 9th order polynomial to the
differences in Fig. 4, which means that also the bias can be
modelled by a polynomial of the same order. The estimated
bias-polynomial is shown in Fig. 5.
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Fig. 7. Power spectral density (PSD) of the residual potential shown
in Fig. 6 (black line). The gray line shows the same residuals after
high-pass filtering below orbit frequency (indicated by the dashed
line).

The bias in the along-track component shows variations of
around 0.07µm s−2 within 11 days, which is around 2% of
the bias. The relevance of this result can be tested by com-
paring the disturbing potential to a potential model after bias
correction. In Fig. 6 the residuals with respect to EIGEN-1S
are shown, where in the first case (black line) only a constant
bias is applied and in the second case (gray line) the bias-
polynomial of Fig. 5 is used. This indicates that even though
the estimated bias is quite stable (up to 2%), still the effect of
those variations on the potential cannot be neglected.

If one is not interested in calibration parameters, of course
the long wavelength trend in the residual signal shown in
Fig. 6 could also be reduced by high-pass filtering. The
power spectral density of the residuals before and after fil-
tering are shown in Fig. 7. There all frequencies below or-
bit frequency are filtered out. The result is equal to the one
shown in Fig. 6. In any case, also all temporal variations
in the signal are filtered out, not only variations of the ac-
celerometer bias.

5 Semi-analytical gravity field analysis

The disturbing potential can be developed in a series of
spherical harmonics. In gravity field analysis one wants to
determine the coefficients1Klm of such a series. This can
be quite costly from the computational point of view, because
the number of unknowns rises quadratically with the max-
imum degree of the series. Therefore we make use of the
following semi-analytical approach (Sneeuw, 2000).

In case of special orbit geometry (constant inclination and
radius) the normal matrix becomes block-diagonal and each
block can be inverted separately. Thus the computational ef-
fort is lowered drastically and the analysis can be performed
even on a usual PC within some minutes. The method can
be used also for orbits, which are only near circular, like e.g.
CHAMP, and approximation errors can be overcome by iter-
ations.
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In lumped coefficients representation the disturbing poten-
tial along the orbit is given by

T (u,3) =

L∑
m=−L

L∑
k=−L

Amk e
i(ku+m3), (7)

whereAmk are the lumped coefficients,3 is the longitude of
the ascending node and the argument of latitude along the or-
bit u = ν+ω is the sum of true anomalyν and the argument
of perigeeω. L is the maximum spherical harmonic degree.
The lumped coefficientsAmk can then be connected to the
potential coefficients1Klm through

Amk =

L∑
l=max(|m|,|k|)

GM

R

(
R

r

)l+1

Flmk(I )1Klm, (8)

whereFlmk(I ) is an inclination function of constant incli-
nationI , R is the equatorial radius of the earth andGM is
the product of the earth’s massM and the gravitational con-
stantG = 6.67 · 10−11 m3 kg−1 s−2. Take note that there
appears no eccentricity function in Eq. (8) because the orbit
is assumed to be circular (therefore alsor is constant). Equa-
tion (8) is the mathematical model used in a least squares ad-
justment to determine the unknown coefficients1Klm from
the quasi-observed lumped coefficients.

Equation 7 has the form of a two-dimensional Fourier se-
ries. If the disturbing potential along the orbit is known,
the lumped coefficients can be computed from a two-
dimensional Fourier transformation. The proper space
domain of a two-dimensional Fourier series is a torus
(Hofmann-Wellenhof and Moritz, 1986). Therefore the po-
tential along the orbit is first interpolated to a regular grid on
the surface of a torus (see Sneeuw, 2001). This is straight

forward as the potential is already reduced to constant or-
bit height in Eq. (5) and the torus coordinatesu and3 can
be computed from the orbital elements. From the gridded
potential theAmk are determined by 2D-FFT. Then the co-
efficients1Klm can be computed by solving the system of
linear equations in (8).

6 Results

From the disturbing potential along the 11-day orbit a set of
spherical harmonic coefficients was derived. From this set
a time series of disturbing potential was generated along the
orbit. The residuals with respect to the original time series
were again used to determine corrections to the first set of
coefficients. This iteration was repeated until there was no
reduction of the residuals anymore.

The result is compared to EIGEN-1S, which is a state-of-
the-art satellite-only model. As can be seen from the degree
variances in Fig. 8 there is no signal above degree 60, or so.
Therefore the following comparisons are restricted to this de-
gree. In terms of geoid height our solution (denoted IAPG)
and EIGEN-1S differ by up to±2 m (see Fig. 9, top). This
is quite a good agreement compared to contemporary models
like GRIM5-S1 (Gruber et al., 2000) or EGM96s (Lemoine
et al., 1997). Both models show at least twice as large differ-
ences (see Fig. 9, middle and bottom). Also the structure of
the differences is different. While the residuals of GRIM5-
S1 show a wave-like structure around the equator our solu-
tion shows a clear correlation to the orbit tracks. This could
indicate orbit errors, probably velocity errors. The largest
differences show up in regions of strong signal, like over the
Andes or in east and south-east Asia.

From the degree variance plot (see Fig. 8) of the differ-
ences between the models it can be seen that, except for the
very low coefficients, our solution is more or less identi-
cal to EIGEN-1S (the differences are well below the accu-
racy of EIGEN-1S), while there are significant differences
to GRIM5-S1 and EGM96s. In RMS sense (see RMS val-
ues over latitude in Fig. 10) there are differences between
the contemporary models of some decimeters up to meters in
geoid height. Our solution fits to EIGEN-1S within a level of
around 30 cm.

7 Concluding remarks

The results in Sect. 6 show, that the gravity field determined
from the energy balance approach fits better to the model
EIGEN-1S than other contemporary satellite-only models
like GRIM5-S1 or EGM96s. This proofs that the energy
method is feasible for gravity field recovery. The solution
achieved by Gerlach et al. (2003) using GFZ’s RSO was at
the level of around 20 cm at satellite altitude, while with the
present TUM-orbit nearly the same accuracy was achieved
at ground level. This significant improvement is due to the
better quality of the orbits.
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As already mentioned, the reduced-dynamic approach to
orbit determination is sensitive to the a priori gravity field.
This holds especially for the velocity, which is the critical
quantity in the energy integral (Visser et al., 2003). For
the TUM-orbit the model EIGEN-1S was used. Consider-
ing this it should not be a surprise, that our solution fits bet-
ter to EIGEN-1S than the other potential models. Obviously
further investigations are necessary to decrease the correla-
tion to the a priori field. The use of purely kinematic orbits
could help because no prior information about the gravity
field would be necessary. In this case however the outcome
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Fig. 10. RMS of geoid height difference to EIGEN-1S along paral-
lels.

of the orbit determination are positions only and the veloci-
ties would have to be derived from those. This could be done,
e.g., by differencing in time, fitting polynomials or spline in-
terpolation.

Still the result shows, that the energy balance approach
is a promising method for gravity field determination. It is
possible to derive from only 11 days of continuous track-
ing of CHAMP a potential model which is (compared to the
model EIGEN-1S) more accurate than the pre-CHAMP mod-
els, which are based on decades of data. It is also shown
that the gravity field recovery can be done using an efficient
semi-analytical approach. A full gravity field solution can be
derived on a usual PC within some minutes.

Furthermore the cross-over analysis is a powerful tool
to detect and determine calibration parameters for the ac-
celerometer. In this paper we have only estimated the bias
of the along-track component because the dissipative term
1C is most sensitive to this component, while the radial
and cross-track components play a minor role. It must be
mentioned that using the cross-over analysis not only the ac-
celerometer bias (including its variations) but also the ne-
glected radial component, errors in the scaling factors (we
have used 0.8 for all components) as well as all kinds of
temporal variations enter our computation. The same holds
for all effects which are not modelled. All those effects are
somehow mapped into the bias estimation. Considering the
direct luni-solar tidal potential which is by far the largest
temporal variation, it amounts to up to 6 m2 s−2. If we com-
pare the residual potential with respect to a constant bias (see
Fig. 6), it reaches values of 60 m2 s−2, which is one order
of magnitude larger than direct tidal effects. If we neglect
all temporal variations (including tides) our estimate for the
bias variations would be wrong for around 10%. Making up
only 2% of the bias, this error in the bias variation would
lead to an error of the bias of only 0.2%. Therefore it can be
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assumed that un-modelled temporal variations are not signif-
icant to our current accuracy level. On the other hand an error
in the scaling factor would result in a similar effect as a tem-
poral variation in the along-track bias. Further investigations
are necessary to overcome this problem and to decouple bias
and scaling factors. Also the radial ACC-component should
be included in future computations, now that the erroneous
data can be corrected.
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