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Abstract. An algorithm for the (kinematic) orbit analysis
of a Low Earth Orbiting (LEO) GPS tracked satellite to de-
termine the spherical harmonic coefficients of the terrestrial
gravitational field is presented. A contribution to existing
long wavelength gravity field models is expected since the
kinematic orbit of a LEO satellite can nowadays be deter-
mined with very high accuracy in the range of a few cen-
timeters. To demonstrate the applicability of the proposed
method, first results from the analysis of real CHAMP Rapid
Science (dynamic) Orbits (RSO) and kinematic orbits are
illustrated. In particular, we take advantage of Newton’s
Law of Motion which balances the acceleration vector and
the gradient of the gravitational potential with respect to an
Inertial Frame of Reference (IRF). The satellite’s accelera-
tion vector is determined by means of the second order func-
tional of Newton’s Interpolation Formula from relative satel-
lite ephemeris (baselines) with respect to the IRF. There-
fore the satellite ephemeris, which are normally given in
a Body fixed Frame of Reference (BRF) have to be trans-
formed into the IRF. Subsequently the Newton interpolated
accelerations have to be reduced for disturbing gravitational
and non-gravitational accelerations in order to obtain the ac-
celerations caused by the Earth’s gravitational field. For a
first insight in real data processing these reductions have
been neglected. The gradient of the gravitational potential,
conventionally expressed in vector-valued spherical harmon-
ics and given in a Body Fixed Frame of Reference, must be
transformed from BRF to IRF by means of the polar motion
matrix, the precession-nutation matrices and the Greenwich
Siderial Time Angle (GAST). The resulting linear system of
equations is solved by means of a least squares adjustment
in terms of a Gauss-Markov model in order to estimate the
spherical harmonics coefficients of the Earth’s gravitational
field.
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1 Reference frames

First, the beforehand mentioned transformation between the
Inertial Reference Frame and the Body Fixed Reference
Frame is considered for this contribution more an issue of
the operational point of view (software development) since
the underlying theoretical aspects are well known, eg. Mc-
Carthy (1996). The resulting transformation matrixR(t)

contains the parameters of nutation, precession, polar motion
and Greenwich siderial time. Corrections for the nutation
model and the parameters for polar motion and Greenwich
siderial time are delivered by the Bulletins of the Interna-
tional Earth Rotation Service (IERS).

2 Representation of the Earth’s gravitational field – the
spherical harmonics series expansion

For the description of the gravitational field of the Earth we
use a spherical harmonics series expansion. Equation (1)
defines this series expansion of the gravitational potential
U(λ, ϕ, r) as an infinite sum. In our approach the summa-
tion is only executed to a maximum sensitivity degreeL,
constituted by the measurement principle of CHAMP.GM

denotes the geocentric gravitational constant,R the mean ra-
dius of the Earth,l andm degree and order of the spheri-
cal harmonics series expansion andP ∗

l,m(sinϕ) are Ferrer’s
fully normalized associated Legendre functions.ul,m iden-
tify the unknown spherical harmonic coefficients which we
aim to determine. These coefficientsul,m can be divided into
coefficientscl,m (cosine term,m ≥ 0) andsl,m (sine term,
m < 0).

Ferrer’s fully normalized associated Legendre-functions
P ∗

l,m(sinϕ) are obtained from the associated Legendre-
functionsPl,m(sinϕ) by normalisation according to Eq. (2).
For an efficient and numerical stable computation of the as-
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Fig. 1. Interpolation errors of Newton interpolated accelerations
X for one simulated CHAMP revolution based on EGM96 up to
degree/order 50/50; sampling time1t = 30 s; 9-point scheme;x-
axis: time in [s];y-axis: acceleration error in [m/s2]

sociated Legendre functions recurrence formulae are applied
(Koop and Stelpstra, 1989; Belikov and Taybatarov, 1992).

3 Determination of accelerations by means of Newton
interpolation

For the determination of accelerations from GPS tracked
absolute ephemerisX(t) or baselines1X(t) we have cho-
sen Newton’s interpolation formula for equidistant sampling
points (Engeln-M̈ullges and Reutter, 1966). Based on the
zero order functional, Eq. (3), we derive Newton’s second
order interpolation formula in Eq. (7) which is computed by
a product-sum of forward differences (Eq. 5) and the sec-
ond order functional of Newton’s base polynomials (Eq. 8).
Newton’s base polynomials (Eq. 6) contain the time differ-
ence quotientq (Eq. 4) and are received viaq over i. The
forward differences are originally determined from absolute
ephemeris (Eq. 5), but in our case the forward differences can
be expressed in terms of relative ephemeris (baselines of ad-
jacent positions, Eq. 9). Since adjacent ephemeris are highly
correlated (and thus relative ephemeris can be determined a

lot more precise than absolute ones), an improvement of ac-
curacy is realized.

For our purpose, the application of the 9-point scheme has
turned out to provide the best approximation (Austen and
Reubelt, 2000), and so the following computations and fig-
ures are based upon the 9-point interpolation scheme.

In general an-point interpolation scheme can be consid-
ered as a mask, which allows the computation of accelera-
tion vectors from sets ofn satellite’s CoM (Center of Mass)
position vectors. This mask is moved successively through
the position time series generating an acceleration time se-
ries, which has to be further corrected for disturbing acceler-
ations caused by atmospheric drag, solar radiation pressure,
third body effects, etc. Again the operational implementation
is very laborious, for details one can consult Hartmann and
Wenzel (1995), King-Hele (1987) and Wahr (1995). Due to
the immense number of observations it is possible to proceed
the mask in a non - overlapping way to avoid correlation for
consecutive mask positions.

4 Performance analysis of Newton interpolation

4.1 Approximation error

To examine the quality of the proposed procedure to deter-
mine the accelerations of the satellite, we investigated first
the approximation behaviour of Newton interpolation for
simulated orbit data, neglecting measurement errors. Fig-
ure 1 illustrates the approximation behaviour for one sim-
ulated CHAMP revolution based upon a degree and order
50/50 EGM96 gravity field (Lemoine et al., 1998). For the
whole revolution, the approximation error lies within an ac-
curacy of 3· 10−9 m/s2 (0.0003 mGal) which is well in the
level of the accuracy of the other instruments, for instance
the accelerometer.

4.2 Influence of GPS measurement errors

In the next step, we analysed the influence of GPS-
measurement errors in the Newton-interpolated accelera-
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Table 2 

“principle of Newton interpolation; 
from the zero order functional to the second order functional” 
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tions. In order to set up an adequate error-simulation func-
tion for absolute ephemeris that considers high correlations
between adjacent ephemeris, a Gauss-Markov process has
been introduced. This process, successfully used by Gra-
farend and Vanicek (1980) in the weight estimation in lev-
elling and applied to our topic by Austen et al. (2002) has
the following properties of the simulated errors of absolute
coordinatesei : standard deviationσ(ei) = 10 cm, correla-

tion ρ = 0.99. The simulated errorsen+1,n of baselines are
received as differences of position errorsei . The parameters
of this noise process were estimated from a comparison of
real dynamic and kinematic CHAMP orbits, as explained in
Sect. 6.

Figures 2a and b illustrate some results: While the errors
of baselines lie within 5 cm, the errors of absolute ephemeris
mount up to 15 cm. Thus, the application of baselines in
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Fig. 2. (a) simulated errors of the tracked coordinates (dark) and
baselines (grey) in cm and(b) errors of Newton interpolated accel-
erations in m/s2 (9-point scheme;1t = 30 s); standard deviation
σx = 10 cm and correlationρ = 0.993

= 0.970299 of absolute
ephemeris; one revolution of the CHAMP-satellite.

Newton interpolation will improve the accuracy. The errors
of the Newton interpolated accelerations obtained from a 30 s
sampling time lie within an accuracy of a few mGal. Due to
the immense amount of observations from a 5 years mission
duration of CHAMP this accuracy is sufficient to estimate a
long wavelength geoid with an accuracy of at least one dm,
as estimated from simulations (Reubelt et al., 2002). More
details on the derivation of the vector-valued second order
functional of Newton’s interpolation formula can be found in
Austen and Reubelt (2000) and Austen et al. (2002).

5 System of equations

After the determination of the satellite’s acceleration vec-
tor by means of Newton’s interpolation formula we have
to compute the gradient of the gravitational Potential in the
IRF. Therefore the partial derivatives of the gravitational po-
tential U(λ, φ, r), Eq. (1), w.r.t. the spherical coordinates
(λ, φ, r) have to be determined, which are transformed in
partial derivatives w.r.t. Cartesian BRF coordinates by means
of the chain rule. Subsequently this Cartesian gradient is ro-
tated into the IRF by means of the rotation matrixRT , where
it is balanced by Newton’s law of motion with the satellite’s
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Fig. 3. Degree variances of the estimated standard deviation and the
differences between the recovered coefficients and various existing
gravity models.

acceleration vector. The resulting linear system of equations
is solved for the spherical harmonic coefficients by apply-
ing a least squares adjustment in terms of a Gauss-Markov
model.

6 Results

In this section we provide some results that have been ob-
tained from an analysis of preliminary real CHAMP orbit
data sets. The model error as well as accuracy estimates from
error simulations of our method have already been tested in
previous papers by Austen and Reubelt (2000), Austen et
al. (2002) and Reubelt et al. (2002). There, aRMS of the
geoid for an error-free simulation of a 1-week-arc (model-
error) in the sub-mm range for degree/order 30/30 was ob-
tained, which is sufficient for CHAMP-data analysis. From
an error simulation study with the variance of coordinates
σX = 10 cm and the correlation ofρ = 0.99, which seems
to be a realistic for kinematic orbits according to Reubelt et
al. (2002) aRMS of the geoid of 23 cm was received. Re-
garding the complete CHAMP-mission, a geoid accuracy of
below 10 cm seems to be possible, which is at least a con-
firmation of present geoid models. An improving quality of
kinematic orbits gives rise to hope for a higher geoid accu-
racy (Svehla and Rothacher, 2002b). In order to obtain a first
insight in real data processing with the proposed method, we
have analysed two short preliminary CHAMP orbit data sets
in this section.

First we have analysed the CHAMP RSO (Michalak et al.,
2002) in the period of 1 July – 16 August 2001, which is
sampled in the interval of1t = 30 s. The CHAMP RSO
is a dynamic orbit based on a taylored GRIM5-C1 (Gruber
et al., 2000) model, thus the determined accelerations of the
RSO will be highly correlated to GRIM5-C1. The estimated
gravity field model should be comparable to GRIM5C1, and
therefore we have made comparisons to this model. Due to
a good condition number of the normal matrix of about 700,
no regularisation had been applied. For a first case study
the Newton interpolated accelerations were not reduced from
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Fig. 4. Difference between recovered geopotential from a 45-days CHAMP-RSO and GRIM5C1 up to degree/order 50/50 on the surface of
a reference Earth withR = 6371 km; withoutc20 term;RMSPot = 2.8 m2/s2

disturbing gravitational accelerations (third body attraction
of sun, moon, other planets, ocean tides, solid Earth tides
. . .). Their effect on the geopotential is considered to be in
the size of 1–2 m2/s2 ∼= σ̂geoid = 10 cm (in general) with
maximum values of 10 m2/s2 ∼= σ̂geoid = 1 m. Further-
more, the accelerometer measurements are omitted, since
they still contain large biases. After publication of these bi-
ases by GFZ (GeoForschungsZentrum Potsdam), the reduc-
tion of non conservative disturbing accelerations measured
by the accelerometer will be carried out. Another possibility,
which is in discussion, is the estimation of the accelerome-
ter biases together with the spherical harmonic coefficients in
one adjustment. The effect of negligence of the accelerom-
eter measurements is about the same as the influence of the
disturbing gravitational forces.

Figure 4 illustrates the differences between the recov-
ered geopotential from a 45-days CHAMP RSO and from
GRIM5 C1 up to degree and order 50/50 on the surface of a
reference sphere withR = 6371 km. The root mean square
(RMS) of the difference is about 2.8 m2/s2, which corre-
sponds to aRMS of geoidal undulations of 28 cm, while the
RMS of the difference of a recovery up to degree/order 30/30
is 1.4 m2/s2 (as expected due to a loss of signal strength,
caused by the term(R/r)l) for higher degreesl at satellite
altitude). This error is, as visible in the Fig. 4, mainly caused
by the polar data gap due to the inclination of the CHAMP
orbit. At the non-polar regions, the difference to GRIM5C1
is smoother and mostly smaller than 1–2 m2/s2 with the high-
est errors in the mountain areas, for instance the Himalayas
or the Andes, where the gravity field is rough. Small oscilla-
tions may be caused by the aliasing effect, since the gravity
field was solved only to a maximum degreeL.

To exhibit the negative effect of signal loss and downward
continuation, the differences to the GRIM5C1 model up to
degree/order 50/50 have also been computed at satellite alti-
tude (h = 400 km). The recovered geopotential at satellite

altitude is smoother (RMSPot = 1.1 m2/s2) than the com-
puted geopotential on the reference sphere. This is the ef-
fect of the signal damping at satellite altitude by(R/r)l , thus
the higher frequency parts can not be discovered by satel-
lite measurements at least not by CHAMP, as accurate as
by terrestrial measurements. Furthermore a well known fact
is clarified: While the differences are small at satellite alti-
tude, they grow very fast with decreasing altitude due to an
enhancement of noise by downward continuation. The dif-
ferences on the surface are 4.5 times higher than at satellite
altitude.

Figure 3 presents the error degree-variances to various
models (EGM96, GRIM5C1 and GRIM5S1; Biancale et
al., 2000), as well as the estimated standard deviations of our
computations. It shows that the recovered potential fits best
to the GRIM5C1 model. Especially the differences to the
satellite-only model GRIM5S1 are very high. That can be
explained by lower accuracy and sensitivity of the former in-
cluded satellite data as opposed to CHAMP data. The stan-
dard deviation of the coefficients, which is estimated from
the Gauss-Markov model is smaller than the differences to
the previous models, which may be caused also by the er-
rors of these previous models. Probably the errors of the es-
timated coefficients are higher than the standard deviation,
which is very small due to the (smooth) dynamic determina-
tion of the RSO.

Subsequently we have analysed kinematic orbits, which
are more erroneous, but not based on a force model in terms
of a gravity field, and thus will lead to an independent gravity
field solution. For our investigations we took a real prelim-
inary kinematic CHAMP orbit of a 11-days time period, 20
to 30 May 2001, sampled at1t = 30 s, which was processed
by means of zero difference carrier phase measurements by
Svehla and Rothacher (2002a). In order to estimate the accu-
racy of the kinematic orbit as well as the accuracy of the es-
timated baselines and accelerations, we made a comparison
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Fig. 5. (a) difference of absolute
ephemeris,(b) difference of baselines
(x-coordinate) and(c) difference of
accelerations (x-coordinate) between
CHAMP RSO and kinematic orbit (day
141/2001) in the qIRF.

to the (smooth) Rapid Science (dynamic) orbit. Figures 5a
to c illustrate the differences of (a) absolute coordinates, (b)
baselines and (c) accelerations between kinematic and Rapid
Science orbit.

The accuracy of the RSO is estimated by an independent
comparison to Satellite Laser Ranging (SLR) measurements
as 11 cm (Michalak et al., 2002) while the accuracy of the
kinematic orbit can be classified in the range of 10–15 cm by
a comparison to SLR (Svehla and Rothacher, 2002a, b). A
second possibility to obtain information about the quality of
the RSO is overlap analysis. From the 2 h overlap intervals
of the 14 h RSO arcs we estimate an accuracy of the absolute
RSO coordinates of 30 cm (Fig. 6a), while the accuracy of

the RSO-baselines is 0.9 cm (Fig. 6b). Indeed, as the com-
parison to SLR illustrates, the accuracy of the RSO is much
better, since the dynamic orbits are less accurate at the over-
lap intervals due to oscillation effects at the beginning and at
the end of an arc. Thus, the accuracy of the baselines is even
higher than the estimated 0.9 cm which means that they pro-
vide ideal reference values for the evaluation of the kinematic
orbit baselines. Figure 5a illustrates the differences between
the kinematic orbit and the RSO, which are in the level of
22 cm. Though it is difficult to use this difference to estimate
the real error level of the kinematic orbit due to errors in the
RSO, we are able to extract from Fig. 5a that the errors of
the kinematic orbit are far from being white noise (due to
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Fig. 6. (a) differences of absolute
RSO ephemeris,(b) RSO-baseline dif-
ferences and(c) RSO acceleration dif-
ferences as obtained from orbit overlaps
of 6 arcs of CHAMP RSO (days 141–
143/2001) in the qIRF (5 overlap peri-
ods with 2 hours),x-, y-, z-coordinates
(bright grey, dark grey, black).

the smooth behaviour of the RSO). This becomes apparent
in Fig. 5b where the differences of the baselines computed
from the kinematic orbit and the RSO are plotted, which are
in the level of 1.0 cm (if we disregard the few outliers) and
which would have been in the dm – level for white noise.

Regarding the accuracy of the RSO baselines of at least
0.9 cm or better, the absolute accuracy of the kinematic orbit
baselines lies within 1–2 cm. Taking a value for the base-
line – accuracy of 1.5 cm and the absolute kinematic or-
bit error (by the comparison to SLR) of 10 cm, we obtain
from their ratioσ1Xi

/σXi
=

√
2
√

1 − ρ (resulting from er-
ror propagation) a correlation coefficient of aboutρ = 0.99,
which we have applied in our simulations. From theRMS

of the difference of the accelerations between RSO and kine-
matic orbit of 1.9997 m/s2 and the accuracy of RSO accel-
erations of 1.7 · 10−6 m/s2 estimated from overlaps we de-
termine the accuracy of kinematic orbit accelerations in the
level of 2 mGal, as obtained from simulations of Sect. 4.2.
This should lead (Reubelt et al., 2002) to a geoid accuracy
of at least 1 dm for the complete CHAMP mission, which
is comparable to present day long-wavelength geoid models,
and demonstrates in general the applicability of the proposed
method. Further refinement of the method will eventually
lead to a contribution in improving these geoid models.

For the sake of completeness, we present the statistics of
the analyzed 11-days kinematic orbit:
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averaged differences of estimated coefficients between

RSO and kinematic orbit of one degree
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Fig. 7. Averaged differences of estimated spherical harmonic coefficients between kinematic and Rapid Science CHAMP orbit.
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Fig. 8. Difference between recovered geopotential from a 11-days CHAMP-kinematic orbit and GRIM5C1 up to degree/order 30/30 on the
surface of a reference Earth withR = 6371 km; withoutc20 term;RMSPot = 3.2 m2/s2.

– number of analyzed coordinate-triples: 27 360; number
of data-gaps: 635;

– number of determined acceleration-triples1: 25 853

– RMS of coordinates2/ baselines2/ accelerations2:
0.22285 m / 0.01047 m / 1.9997· 10−5 m/s2.

(1): baselines with a deviation of 0.1 m in comparison
to RSO have been neglected

(2): RMS of differences between CHAMP RSO and
CHAMP kinematic orbit

Figure 8 presents the difference between the recovered po-
tential from the kinematic orbit and the GRIM5C1 model up
to degree/order 30/30. Obviously the estimated coefficients
and the recovered potential from the kinematic orbit are nois-
ier than those from the analysis of the Rapid Science orbit,
but we have to notice that the kinematic orbit data set was
shorter than the RSO data set. The highest differences seem
to be in the regions of rough gravity field as for example the
Andes or the Himalayas, but also in other areas bigger dif-
ferences are visible. For the estimation up to degree/order

30/30 the recovered potential differs from GRIM5C1 by
RMSPot = 3.2 m2/s2, which corresponds to aRMS of geoid
differences of∼30 cm. If the kinematic orbit is analysed to a
higher degree/order, for instance 50/50, theRMS increases
to RMSPot = 9.5 m2/s2, which means aRMS of geoid dif-
ferences of almost 1 m. This is stated by Fig. 7, where we can
extract the errors of the coefficients to degree 30 in the level
of 1 · 10−10

− 1 · 10−9, while they are increasing for higher
degrees. We have to keep in mind, that only a 11-days kine-
matic CHAMP arc has been analysed. The investigation of
longer and more accurate arcs will lead to a higher accuracy,
even for the coefficients of higher degree.

7 Conclusions

First results from preliminary real CHAMP orbits by means
a gravity field determination approach based on determined
accelerations from a LEO satellite orbit are presented in
this contribution to demonstrate arising problems with the
method and the achievable accuracy. A numerical differen-
tiation scheme is applied to determine the accelerations. To
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minimize noise amplification due to differentiation, baselines
instead of absolute ephemeris are introduced, which can be
determined more accurate since kinematic orbits are highly
correlated. TheRMS of the accelerations lies within 1–
2 mGal, which leads to a long-wavelength geoid accuracy in
the range of 20 cm from 1-week-arcs, as estimated from sim-
ulations in previous papers. Thus from the whole CHAMP-
mission, a long- wavelength geoid accuracy of at least 1 dm
can be expected. The analysis of a preliminary 10-days kine-
matic CHAMP orbit leads to a lower accuracy of 30 cm.
Since an improvement of kinematic orbits is expected in the
near future (Svehla and Rothacher, 2002b), from the whole
CHAMP mission also a geoid accuracy of at least 1dm is
expected, which is at least a confirmation of state of the art
models. But an improvement of existing gravity field models
seems at the moment hard to realize. A comparison between
the proposed method and existing approaches has to be done
to demonstrate if our algorithm can compete, in particular if
and which parts of the gravitational field can be determined
better. Future research should focus mainly on noise reduc-
tion in the process of acceleration determination, for instance
by means of smoothing interpolation functions or regression
methods, since the accuracy level of 1–2 mGal still seems to
high.
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aus semi-kontinuierlichen Ephemeriden niedrigfliegender GPS-
vermessener Satelliten vom Typ CHAMP, GRACE und GOCE,
M. Sc. Thesis, Geodetic Institute, University of Stuttgart, Ger-
many, 2000.

Austen, G., Grafarend, E. W., and Reubelt, T.: Analysis of the
Earth’s Gravitational Field from Semi-Continuous Ephemeris of
a Low Earth Orbiting GPS-Tracked Satellite of Type CHAMP,
GRACE or GOCE, in: International Association of Geodesy
Symposia, Vol. 125, Vistas for Geodesy in the New Millennium,
(Eds) Adam, J. and Schwarz, K. P., Axel Springer Verlag, 2002.

Belikov, M. V. and Taybatorov, K. A.: An efficient algorithm for
computing the Earth’s gravitational potential and its derivatives
at satellite altitudes, Manuscr. Geod. 17, 104–116, 1992.

Biancale, R., Balmino, G., Lemoine, J. M., Marty, J. C., Moyno,
B., Barlier, F., Exertier, P., Laurain, O., Gegout, P., Schwintzer,
P., Reigber, Ch., Bode, A., Gruber, Th., König, R., Massmann,
F. H., Raimondo, J. C., Schmidt, R., and Zhu, S. Y.: A new

global Earth’s gravity field model from satellite orbit perturba-
tions: GRIM5-S1, Geophys. Res. Lett., 27, 3611–3614, 2000.

Engeln-M̈ullges, G. and Reutter, F.: Numerische Mathematik für
Ingenieure (Numerical mathematics for engineers), BI Wis-
senschaftsverlag, Mannheim-Wien-Zürich, 1988.
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